scholarly journals Method for Fault Diagnosis of Temperature-Related MEMS Inertial Sensors by Combining Hilbert–Huang Transform and Deep Learning

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5633 ◽  
Author(s):  
Tong Gao ◽  
Wei Sheng ◽  
Mingliang Zhou ◽  
Bin Fang ◽  
Futing Luo ◽  
...  

In this paper, we propose a novel method for fault diagnosis in micro-electromechanical system (MEMS) inertial sensors using a bidirectional long short-term memory (BLSTM)-based Hilbert–Huang transform (HHT) and a convolutional neural network (CNN). First, the method for fault diagnosis of inertial sensors is formulated into an HHT-based deep learning problem. Second, we present a new BLSTM-based empirical mode decomposition (EMD) method for converting one-dimensional inertial data into two-dimensional Hilbert spectra. Finally, a CNN is used to perform fault classification tasks that use time–frequency HHT spectrums as input. According to our experimental results, significantly improved performance can be achieved, on average, for the proposed BLSTM-based EMD algorithm in terms of EMD computational efficiency compared with state-of-the-art algorithms. In addition, the proposed fault diagnosis method achieves high accuracy in fault classification.

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
David Verstraete ◽  
Andrés Ferrada ◽  
Enrique López Droguett ◽  
Viviana Meruane ◽  
Mohammad Modarres

Traditional feature extraction and selection is a labor-intensive process requiring expert knowledge of the relevant features pertinent to the system. This knowledge is sometimes a luxury and could introduce added uncertainty and bias to the results. To address this problem a deep learning enabled featureless methodology is proposed to automatically learn the features of the data. Time-frequency representations of the raw data are used to generate image representations of the raw signal, which are then fed into a deep convolutional neural network (CNN) architecture for classification and fault diagnosis. This methodology was applied to two public data sets of rolling element bearing vibration signals. Three time-frequency analysis methods (short-time Fourier transform, wavelet transform, and Hilbert-Huang transform) were explored for their representation effectiveness. The proposed CNN architecture achieves better results with less learnable parameters than similar architectures used for fault detection, including cases with experimental noise.


2018 ◽  
Vol 2 (1) ◽  
pp. 18
Author(s):  
Zhiting Liu ◽  
Yuhua Wang ◽  
Yuexia Zhou

The essence of intelligent fault diagnosis is to classify the feature of faults by machine learning. It is difficult and key to extract fault characteristics of signals efficiently. The general feature extraction methods include time frequency domain feature extraction, Empirical Mode Decomposition (EMD), Wavelet Transform and Variational Mode Decomposition (VMD). However, these methods require a certain prior experience and require reasonable analysis and processing of the signals. In this paper, in order to effectively extract the fault characteristics of the  air conditioner's vibration signal, the stacked automatic encoder (SAE) is used to extract the feature of  air conditioner’s vibration signal, and the Softmax function is used to identify the  air conditioner's working condition. The SAE performs unsupervised learning on the signal, and Softmax function performs supervised learning on the signal. The number of hidden layers and the number of hidden layer's nodes  are determined through experiments. The effects of learning rate, learning rate decay, regularization, dropout, and batch size on the correct rate of the model in supervised learning and unsupervised learning are analyzed. Thereby realizing the fault diagnosis of the air conditioner. The recognition correct rate of deep learning model reached 99.92\%. The deep learning fault diagnosis method proposed in this paper is compared with EMD and SVM, VMD and SVM two kind of fault diagnosis methods.


2013 ◽  
Vol 845 ◽  
pp. 41-45 ◽  
Author(s):  
Kar Hoou Hui ◽  
Lim Meng Hee ◽  
M. Salman Leong ◽  
Ahmed M. Abdelrhman

Growing demand of machines such as gas turbine, pump, and compressor in power generation, aircraft, and other fields have yielded the transformation of machine maintenance strategy from corrective and preventive to condition-based maintenance. Real-time fault diagnosis has grabbed attention of researchers in looking for a better approach to overcome current limitation. The parameters of health condition in machinery could be monitored thus faults could be detected and diagnosed by using signal analysis approach. Since some fault signals are non-stationary or time dependent in nature, therefore time-frequency signal analysis is crucial for machinery fault diagnosis. Common time-frequency signal analysis methods are such as short time Fourier transform (STFT), wavelets analysis, empirical mode decomposition (EMD), Hilbert-Huang transform (HHT), etc. This review provides a summary of the basic principle of signal analysis, the most recent researches, and some advantages and limitations associated to each types of time-frequency signal analysis method.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Author(s):  
Mykola Sysyn ◽  
Olga Nabochenko ◽  
Franziska Kluge ◽  
Vitalii Kovalchuk ◽  
Andriy Pentsak

Track-side inertial measurements on common crossings are the object of the present study. The paper deals with the problem of measurement's interpretation for the estimation of the crossing structural health. The problem is manifested by the weak relation of measured acceleration components and impact lateral distribution to the lifecycle of common crossing rolling surface. The popular signal processing and machine learning methods are explored to solve the problem. The Hilbert-Huang Transform (HHT) method is used to extract the time-frequency features of acceleration components. The method is based on Ensemble Empirical Mode Decomposition (EEMD) that is advantageous to the conventional spectral analysis methods with higher frequency resolution and managing nonstationary nonlinear signals. Linear regression and Gaussian Process Regression are used to fuse the extracted features in one structural health (SH) indicator and study its relation to the crossing lifetime. The results have shown the significant relation of the derived with GPR indicator to the lifetime.


Author(s):  
Tong Gao ◽  
Wei Sheng ◽  
Mingliang Zhou ◽  
Bin Fang ◽  
Liping Zheng

In this paper, we propose a novel fault diagnosis (FD) approach for micro-electromechanical systems (MEMS) inertial sensors that recognize the fault patterns of MEMS inertial sensors in an end-to-end manner. We use a convolutional neural network (CNN)-based data-driven method to classify the temperature-related sensor faults in unmanned aerial vehicles (UAVs). First, we formulate the FD problem for MEMS inertial sensors into a deep learning framework. Second, we design a multi-scale CNN which uses the raw data of MEMS inertial sensors as input and which outputs classification results indicating faults. Then we extract fault features in the temperature domain to solve the non-uniform sampling problem. Finally, we propose an improved adaptive learning rate optimization method which accelerates the loss convergence by using the Kalman filter (KF) to train the network efficiently with a small dataset. Our experimental results show that our method achieved high fault recognition accuracy and that our proposed adaptive learning rate method improved performance in terms of loss convergence and robustness on a small training batch.


2020 ◽  
pp. 107754632094971 ◽  
Author(s):  
Shoucong Xiong ◽  
Shuai He ◽  
Jianping Xuan ◽  
Qi Xia ◽  
Tielin Shi

Modern machinery becomes more precious with the advance of science, and fault diagnosis is vital for avoiding economical losses or casualties. Among massive diagnosis methods, deep learning algorithms stand out to open an era of intelligent fault diagnosis. Deep residual networks are the state-of-the-art deep learning models which can continuously improve performance by deepening the network structures. However, in vibration-based fault diagnosis, the transient property instability of vibration signal usually calls for time–frequency analysis methods, and the characters of time–frequency matrices are distinct from standard images, which brings some natural limitations for the diagnosis performance of deep learning algorithms. To handle this issue, an enhanced deep residual network named the multilevel correlation stack-deep residual network is proposed in this article. Wavelet packet transform is used to preprocess the sensor signal, and then the proposed multilevel correlation stack-deep residual network uses kernels with different shapes to fully dig various kinds of useful information from any local regions of the processed input. Experiments on two rolling bearing datasets are carried out. Test results show that the multilevel correlation stack-deep residual network exhibits a more satisfactory classification performance than original deep residual networks and other similar methods, revealing significant potentials for realistic fault diagnosis applications.


2020 ◽  
Vol 10 (20) ◽  
pp. 7068
Author(s):  
Minh Tuan Pham ◽  
Jong-Myon Kim ◽  
Cheol Hong Kim

Recent convolutional neural network (CNN) models in image processing can be used as feature-extraction methods to achieve high accuracy as well as automatic processing in bearing fault diagnosis. The combination of deep learning methods with appropriate signal representation techniques has proven its efficiency compared with traditional algorithms. Vital electrical machines require a strict monitoring system, and the accuracy of these machines’ monitoring systems takes precedence over any other factors. In this paper, we propose a new method for diagnosing bearing faults under variable shaft speeds using acoustic emission (AE) signals. Our proposed method predicts not only bearing fault types but also the degradation level of bearings. In the proposed technique, AE signals acquired from bearings are represented by spectrograms to obtain as much information as possible in the time–frequency domain. Feature extraction and classification processes are performed by deep learning using EfficientNet and a stochastic line-search optimizer. According to our various experiments, the proposed method can provide high accuracy and robustness under noisy environments compared with existing AE-based bearing fault diagnosis methods.


Sign in / Sign up

Export Citation Format

Share Document