scholarly journals A New Association Scheme for Handling Node Mobility in Cluster-Tree Wireless Sensor Networks

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5694
Author(s):  
Rogério Casagrande ◽  
Ricardo Moraes ◽  
Carlos Montez ◽  
Francisco Vasques ◽  
Erico Leão

Node mobility in multi-hop communication environments is an important feature of Wireless Sensor Network (WSN)-based monitoring systems. It allows nodes to have freedom of movement, without being restricted to a single-hop communication range. In IEEE 802.15.4 WSNs, nodes are only able to transfer data messages after completing a connection with a coordinator through an association mechanism. Within this context, a handover procedure needs to be executed by a mobile node whenever there is a disconnection from a coordinator and the establishment of a connection to another one. Many applications, such as those found in health monitoring systems, strongly need support for node mobility without loss of data during the handover. However, it has been observed that the time required to execute the handover procedure is one of the main reasons why IEEE 802.15.4 cannot fully support mobility. This paper proposes an improvement to this procedure using a set of combined strategies, such as anticipation of both the handover mechanism and the scan phase enhancement. Simulations show that it is possible to reduce latency during the association and re-association processes, making it feasible to develop WSN-based distributed monitoring systems with mobile nodes and stringent time constraints.

2021 ◽  
Author(s):  
Bingxin Chen ◽  
Lifei Kuang ◽  
Wei He

Abstract Today, with the rapid development of information age, the communication of science and technology is getting closer to each other, and our country has begun to conduct in-depth research on WSN. This study mainly discusses the computer simulation algorithm of gymnastics formation transformation path based on wireless sensor. In this study, an improved leader follower method is designed. In the research of gymnastics formation transformation of mobile nodes in wireless sensor network environment, the traditional three types of nodes are divided into four categories according to different formation responsibilities, namely coordinator, beacon node, leader and follower. When it makes accurate positioning with the help of beacon node information, it will send the information in the form of broadcast, and then the coordinator will send the information to the host computer through the serial port for tracking display. In order to make the mobile nodes in the network keep the current gymnastics formation moving towards the target point after completing the gymnastics formation transformation, this paper uses the L - φ closed-loop control method to modify the gymnastics formation in real time. The method based on the received signal strength is used to locate the mobile node. Combined with the positioning engine in the core processor CC2431 of the mobile node, the efficient and low-energy wireless positioning can be realized. Multiple mobile nodes coordinate and control each other, and each node communicates with each other through wireless mode, and senses its own heading angle information through geomagnetic sensor, so as to judge and adjust the maintenance and transformation of the current gymnastics formation. In the process of formation transformation, the analysis shows that the maximum offset of follower2 relative to the ideal path is + 0.28M in the process of marching to the desired position in the triangle queue. This research effectively realizes the computer simulation of autonomous formation.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qinghua Chen ◽  
Shengbao Zheng ◽  
Zhengqiu Weng

Mobile crowd sensing has been a very important paradigm for collecting sensing data from a large number of mobile nodes dispersed over a wide area. Although it provides a powerful means for sensing data collection, mobile nodes are subject to privacy leakage risks since the sensing data from a mobile node may contain sensitive information about the sensor node such as physical locations. Therefore, it is essential for mobile crowd sensing to have a privacy preserving scheme to protect the privacy of mobile nodes. A number of approaches have been proposed for preserving node privacy in mobile crowd sensing. Many of the existing approaches manipulate the sensing data so that attackers could not obtain the privacy-sensitive data. The main drawback of these approaches is that the manipulated data have a lower utility in real-world applications. In this paper, we propose an approach called P3 to preserve the privacy of the mobile nodes in a mobile crowd sensing system, leveraging node mobility. In essence, a mobile node determines a routing path that consists of a sequence of intermediate mobile nodes and then forwards the sensing data along the routing path. By using asymmetric encryptions, it is ensured that a malicious node is not able to determine the source nodes by tracing back along the path. With our approach, upper-layer applications are able to access the original sensing data from mobile nodes, while the privacy of the mobile node is not compromised. Our theoretical analysis shows that the proposed approach achieves a high level of privacy preserving capability. The simulation results also show that the proposed approach incurs only modest overhead.


Author(s):  
Dhruvi Patel ◽  
Arunita Jaekel

Wireless sensor networks (WSN) consist of sensor nodes that detect relevant events in their vicinity and relay this information for further analysis. Considerable work has been done in the area of sensor node placement to ensure adequate coverage of the area of interest. However, in many applications it may not be possible to accurately place individual sensor nodes. In such cases, imprecise placement can result in regions, referred to as coverage holes, that are not monitored by any sensor node. The use of mobile nodes that can ‘visit' such uncovered regions after deployment has been proposed in the literature as an effective way to maintain adequate coverage. In this paper, the authors propose a novel integer linear programming (ILP) formulation that determines the paths the mobile node(s) should take to realize the specified level of coverage in the shortest time. The authors also present a heuristic algorithm that can be used for larger networks.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Ze Wang ◽  
Chang Zhou ◽  
Yiran Liu

The node replication attack is one of the notorious attacks that can be easily launched by adversaries in wireless sensor networks. A lot of literatures have studied mitigating the node replication attack in static wireless sensor networks. However, it is more difficult to detect the replicas in mobile sensor networks because of their node mobility. Considering the limitations of centralized detection schemes for static wireless sensor networks, a few distributed solutions have been recently proposed. Some existing schemes identified replicated attacks by sensing mobile nodes with identical ID but different locations. To facilitate the discovery of contradictory conflicts, we propose a hybrid local and global detection method. The local detection is performed in a local area smaller than the whole deployed area to improve the meeting probability of contradictory nodes, while the distant replicated nodes in larger area can also be efficiently detected by the global detection. The complementary two levels of detection achieve quick discovery by searching of the replicas with reasonable overhead.


Author(s):  
A. Sangeetha ◽  
T. Rajendran

As the advent of new technologies grows, the deployment of mobile ad hoc networks (MANET) becomes increasingly popular in many application areas. In addition, all the nodes in MANET are battery operated and the node mobility affects the path stability and creates excessive traffic leads to higher utilization of energy, data loss which degrades the performance of routing. So, in this paper we propose Levenberg–Marquardt logistic deep neural learning based energy efficient and load balanced routing (LLDNL-EELBR) which is a machine learning method to deeply analyze the mobile nodes to calculate residual load and energy and it also uses logistic activation function to select the mobile node having higher residual energy and residual load to route the data packet. Experimental evaluations of three methods (LLDNL-EELBR, multipath battery and mobility-aware routing scheme (MBMA-OLSR) and opportunistic routing with gradient forwarding for MANETs (ORGMA)) were done and the result reveals that LLDNL-EELBR method is able to increase the through put and minimizes the delay and energy consumption in MANET when compared to works under consideration.<br /><div> </div>


Author(s):  
Bingxin Chen ◽  
Lifei Kuang ◽  
Wei He

AbstractToday with the rapid development of the information age, the exchange of science and technology has brought closer the closeness of countries, and our country has also begun to conduct in-depth research on WSN. This research mainly discusses the computer simulation algorithm of gymnastics formation change path based on wireless sensor. In this research, an improved Leader-Follower method is designed. In the research of gymnastics formation transformation of mobile nodes in the wireless sensor network environment, the traditional three types of nodes are divided into four categories according to the different formation responsibilities, namely, coordinator, beacon node, master mobile node (Leader), slave mobile node (Follower). After it accurately locates itself with the help of the information of the beacon node, the information should be sent out in the form of broadcast, and the coordinator sends the information to the host computer through the serial port for tracking display. In order to enable the mobile nodes in the network to keep the current gymnastic formation moving toward the target point after completing the gymnastic formation transformation, this paper uses the l-φ closed-loop control method to modify the gymnastic formation in real time. The method based on the received signal strength is selected to realize the positioning of the beacon node to the mobile node, and combined with the positioning engine in the core processor CC2431 of the mobile node, efficient and low-energy wireless positioning can be realized. Multiple mobile nodes coordinate with each other to control communication between each node in a wireless manner, and sense their own heading angle information through geomagnetic sensors, so as to make judgments and adjustments on the maintenance and transformation of the current gymnastics formation. During the formation change, after analysis, it is concluded that the maximum offset of Follower2 from the ideal path in the process of traveling to the desired position in the triangular queue is + 0.28 m. This research effectively realized the computer simulation of autonomous formation.


2018 ◽  
Vol 7 (4) ◽  
pp. 51 ◽  
Author(s):  
Dimitrios Amaxilatis ◽  
Ioannis Chatzigiannakis

A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications.


In this paper, a mathematical model of the operation process of the ZigBee standard wireless network for remote monitoring systems based on the Markov chain apparatus was developed. Using the model was evaluated of the operation process of the CSMA/CA algorithm of the MAC level of the IEEE 802.15.4 ZigBee standard. The peculiarity of this mathematical model is that it takes into account the level of loading of network elements and potential distortions in the transmitted packets as a result of the influence of interference. Using the developed mathematical model, the main characteristics of the network operation process, such as dependence of the probability of successful transmission of packets on the system load (on the number of nodes), the dependence of the bandwidth on system load (on the number of nodes) for the case where there is noise in the channel and for the absence of noise in the channel were obtained.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Hua Wu ◽  
Ju Liu ◽  
Zheng Dong ◽  
Yang Liu

In this paper, a hybrid adaptive MCB-PSO node localization algorithm is proposed for three-dimensional mobile wireless sensor networks (MWSNs), which considers the random mobility of both anchor and unknown nodes. An improved particle swarm optimization (PSO) approach is presented with Monte Carlo localization boxed (MCB) to locate mobile nodes. It solves the particle degeneracy problem that appeared in traditional MCB. In the proposed algorithm, a random waypoint model is incorporated to describe random movements of anchor and unknown nodes based on different time units. An adaptive anchor selection operator is designed to improve the performance of standard PSO for each particle based on time units and generations, to maintain the searching ability in the last few time units and particle generations. The objective function of standard PSO is then reformed to make it obtain a better rate of convergence and more accurate cost value for the global optimum position. Furthermore, the moving scope of each particle is constrained in a specified space to improve the searching efficiency as well as to save calculation time. Experiments are made in MATLAB software, and it is compared with DV-Hop, Centroid, MCL, and MCB. Three evaluation indexes are introduced, namely, normalized average localization error, average localization time, and localization rate. The simulation results show that the proposed algorithm works well in every situation with the highest localization accuracy, least time consumptions, and highest localization rates.


Sign in / Sign up

Export Citation Format

Share Document