scholarly journals Digital Forensics of Scanned QR Code Images for Printer Source Identification Using Bottleneck Residual Block

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6305
Author(s):  
Zhongyuan Guo ◽  
Hong Zheng ◽  
Changhui You ◽  
Xiaohang Xu ◽  
Xiongbin Wu ◽  
...  

With the rapid development of information technology and the widespread use of the Internet, QR codes are widely used in all walks of life and have a profound impact on people’s work and life. However, the QR code itself is likely to be printed and forged, which will cause serious economic losses and criminal offenses. Therefore, it is of great significance to identify the printer source of QR code. A method of printer source identification for scanned QR Code image blocks based on convolutional neural network (PSINet) is proposed, which innovatively introduces a bottleneck residual block (BRB). We give a detailed theoretical discussion and experimental analysis of PSINet in terms of network input, the first convolution layer design based on residual structure, and the overall architecture of the proposed convolution neural network (CNN). Experimental results show that the proposed PSINet in this paper can obtain extremely excellent printer source identification performance, the accuracy of printer source identification of QR code on eight printers can reach 99.82%, which is not only better than LeNet and AlexNet widely used in the field of digital image forensics, but also exceeds state-of-the-art deep learning methods in the field of printer source identification.

2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sangmin Jeon ◽  
Kyungmin Clara Lee

Abstract Objective The rapid development of artificial intelligence technologies for medical imaging has recently enabled automatic identification of anatomical landmarks on radiographs. The purpose of this study was to compare the results of an automatic cephalometric analysis using convolutional neural network with those obtained by a conventional cephalometric approach. Material and methods Cephalometric measurements of lateral cephalograms from 35 patients were obtained using an automatic program and a conventional program. Fifteen skeletal cephalometric measurements, nine dental cephalometric measurements, and two soft tissue cephalometric measurements obtained by the two methods were compared using paired t test and Bland-Altman plots. Results A comparison between the measurements from the automatic and conventional cephalometric analyses in terms of the paired t test confirmed that the saddle angle, linear measurements of maxillary incisor to NA line, and mandibular incisor to NB line showed statistically significant differences. All measurements were within the limits of agreement based on the Bland-Altman plots. The widths of limits of agreement were wider in dental measurements than those in the skeletal measurements. Conclusions Automatic cephalometric analyses based on convolutional neural network may offer clinically acceptable diagnostic performance. Careful consideration and additional manual adjustment are needed for dental measurements regarding tooth structures for higher accuracy and better performance.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 816
Author(s):  
Pingping Liu ◽  
Xiaokang Yang ◽  
Baixin Jin ◽  
Qiuzhan Zhou

Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM), and it is necessary to diagnose DR in the early stages of treatment. With the rapid development of convolutional neural networks in the field of image processing, deep learning methods have achieved great success in the field of medical image processing. Various medical lesion detection systems have been proposed to detect fundus lesions. At present, in the image classification process of diabetic retinopathy, the fine-grained properties of the diseased image are ignored and most of the retinopathy image data sets have serious uneven distribution problems, which limits the ability of the network to predict the classification of lesions to a large extent. We propose a new non-homologous bilinear pooling convolutional neural network model and combine it with the attention mechanism to further improve the network’s ability to extract specific features of the image. The experimental results show that, compared with the most popular fundus image classification models, the network model we proposed can greatly improve the prediction accuracy of the network while maintaining computational efficiency.


Author(s):  
Baiyu Peng ◽  
Qi Sun ◽  
Shengbo Eben Li ◽  
Dongsuk Kum ◽  
Yuming Yin ◽  
...  

AbstractRecent years have seen the rapid development of autonomous driving systems, which are typically designed in a hierarchical architecture or an end-to-end architecture. The hierarchical architecture is always complicated and hard to design, while the end-to-end architecture is more promising due to its simple structure. This paper puts forward an end-to-end autonomous driving method through a deep reinforcement learning algorithm Dueling Double Deep Q-Network, making it possible for the vehicle to learn end-to-end driving by itself. This paper firstly proposes an architecture for the end-to-end lane-keeping task. Unlike the traditional image-only state space, the presented state space is composed of both camera images and vehicle motion information. Then corresponding dueling neural network structure is introduced, which reduces the variance and improves sampling efficiency. Thirdly, the proposed method is applied to The Open Racing Car Simulator (TORCS) to demonstrate its great performance, where it surpasses human drivers. Finally, the saliency map of the neural network is visualized, which indicates the trained network drives by observing the lane lines. A video for the presented work is available online, https://youtu.be/76ciJmIHMD8 or https://v.youku.com/v_show/id_XNDM4ODc0MTM4NA==.html.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 319
Author(s):  
Yi Wang ◽  
Xiao Song ◽  
Guanghong Gong ◽  
Ni Li

Due to the rapid development of deep learning and artificial intelligence techniques, denoising via neural networks has drawn great attention due to their flexibility and excellent performances. However, for most convolutional network denoising methods, the convolution kernel is only one layer deep, and features of distinct scales are neglected. Moreover, in the convolution operation, all channels are treated equally; the relationships of channels are not considered. In this paper, we propose a multi-scale feature extraction-based normalized attention neural network (MFENANN) for image denoising. In MFENANN, we define a multi-scale feature extraction block to extract and combine features at distinct scales of the noisy image. In addition, we propose a normalized attention network (NAN) to learn the relationships between channels, which smooths the optimization landscape and speeds up the convergence process for training an attention model. Moreover, we introduce the NAN to convolutional network denoising, in which each channel gets gain; channels can play different roles in the subsequent convolution. To testify the effectiveness of the proposed MFENANN, we used both grayscale and color image sets whose noise levels ranged from 0 to 75 to do the experiments. The experimental results show that compared with some state-of-the-art denoising methods, the restored images of MFENANN have larger peak signal-to-noise ratios (PSNR) and structural similarity index measure (SSIM) values and get better overall appearance.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ying Yu ◽  
Yirui Wang ◽  
Shangce Gao ◽  
Zheng Tang

With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient.


Sign in / Sign up

Export Citation Format

Share Document