scholarly journals Frequency-Temporal Disagreement Adaptation for Robotic Terrain Classification via Vibration in a Dynamic Environment

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6550 ◽  
Author(s):  
Chen Cheng ◽  
Ji Chang ◽  
Wenjun Lv ◽  
Yuping Wu ◽  
Kun Li ◽  
...  

The accurate terrain classification in real time is of great importance to an autonomous robot working in field, because the robot could avoid non-geometric hazards, adjust control scheme, or improve localization accuracy, with the aid of terrain classification. In this paper, we investigate the vibration-based terrain classification (VTC) in a dynamic environment, and propose a novel learning framework, named DyVTC, which tackles online-collected unlabeled data with concept drift. In the DyVTC framework, the exterior disagreement (ex-disagreement) and interior disagreement (in-disagreement) are proposed novely based on the feature diversity and intrinsic temporal correlation, respectively. Such a disagreement mechanism is utilized to design a pseudo-labeling algorithm, which shows its compelling advantages in extracting key samples and labeling; and consequently, the classification accuracy could be retrieved by incremental learning in a changing environment. Since two sets of features are extracted from frequency and time domain to generate disagreements, we also name the proposed method feature-temporal disagreement adaptation (FTDA). The real-world experiment shows that the proposed DyVTC could reach an accuracy of 89.5%, but the traditional time- and frequency-domain terrain classification methods could only reach 48.8% and 71.5%, respectively, in a dynamic environment.

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 513 ◽  
Author(s):  
Wenlei Shi ◽  
Zerui Li ◽  
Wenjun Lv ◽  
Yuping Wu ◽  
Ji Chang ◽  
...  

The achievement of robot autonomy has environmental perception as a prerequisite. The hazards rendered from uneven, soft and slippery terrains, which are generally named non-geometric hazards, are another potential threat reducing the traversing efficient, and therefore receiving more and more attention from the robotics community. In the paper, the vibration-based terrain classification (VTC) is investigated by taking a very practical issue, i.e., lack of labels, into consideration. According to the intrinsic temporal correlation existing in the sampled terrain sequence, a modified Laplacian SVM is proposed to utilise the unlabelled data to improve the classification performance. To the best of our knowledge, this is the first paper studying semi-supervised learning problem in robotic terrain classification. The experiment demonstrates that: (1) supervised learning (SVM) achieves a relatively low classification accuracy if given insufficient labels; (2) feature-space homogeneity based semi-supervised learning (traditional Laplacian SVM) cannot improve supervised learning’s accuracy, and even makes it worse; (3) feature- and temporal-space based semi-supervised learning (modified Laplacian SVM), which is proposed in the paper, could increase the classification accuracy very significantly.


2021 ◽  
pp. 1-13
Author(s):  
Xiaoyan Wang ◽  
Jianbin Sun ◽  
Qingsong Zhao ◽  
Yaqian You ◽  
Jiang Jiang

It is difficult for many classic classification methods to consider expert experience and classify small-sample datasets well. The evidential reasoning rule (ER rule) classifier can solve these problems. The ER rule has strong processing and comprehensive analysis abilities for diversified mixed information and can solve problems with expert experience effectively. Moreover, the initial parameters of the classifier constructed based on the ER rule can be set according to empirical knowledge instead of being trained by a large number of samples, which can help the classifier classify small-sample datasets well. However, the initial parameters of the ER rule classifier need to be optimized, and choosing the best optimization algorithm is still a challenge. Considering these problems, the ER rule classifier with an optimization operator recommendation is proposed in this paper. First, the initial ER rule classifier is constructed based on training samples and expert experience. Second, the adjustable parameters are optimized, in which the optimization operator recommendation strategy is applied to select the best algorithm by partial samples, and then experiments with full samples are carried out. Finally, a case study on a turbofan engine degradation simulation dataset is carried out, and the results indicate that the ER rule classifier has a higher classification accuracy than other classic classifiers, which demonstrates the capability and effectiveness of the proposed ER rule classifier with an optimization operator recommendation.


Author(s):  
Chenguang Li ◽  
Hongjun Yang ◽  
Long Cheng

AbstractAs a relatively new physiological signal of brain, functional near-infrared spectroscopy (fNIRS) is being used more and more in brain–computer interface field, especially in the task of motor imagery. However, the classification accuracy based on this signal is relatively low. To improve the accuracy of classification, this paper proposes a new experimental paradigm and only uses fNIRS signals to complete the classification task of six subjects. Notably, the experiment is carried out in a non-laboratory environment, and movements of motion imagination are properly designed. And when the subjects are imagining the motions, they are also subvocalizing the movements to prevent distraction. Therefore, according to the motor area theory of the cerebral cortex, the positions of the fNIRS probes have been slightly adjusted compared with other methods. Next, the signals are classified by nine classification methods, and the different features and classification methods are compared. The results show that under this new experimental paradigm, the classification accuracy of 89.12% and 88.47% can be achieved using the support vector machine method and the random forest method, respectively, which shows that the paradigm is effective. Finally, by selecting five channels with the largest variance after empirical mode decomposition of the original signal, similar classification results can be achieved.


2020 ◽  
Author(s):  
Casey L. Trevino ◽  
Jack J. Lin ◽  
Indranil Sen-Gupta ◽  
Beth A. Lopour

AbstractHigh frequency oscillations (HFOs) are a promising biomarker of epileptogenicity, and automated algorithms are critical tools for their detection. However, previously validated algorithms often exhibit decreased HFO detection accuracy when applied to a new data set, if the parameters are not optimized. This likely contributes to decreased seizure localization accuracy, but this has never been tested. Therefore, we evaluated the impact of parameter selection on seizure onset zone (SOZ) localization using automatically detected HFOs. We detected HFOs in intracranial EEG from twenty medically refractory epilepsy patients with seizure free surgical outcomes using an automated algorithm. For each patient, we assessed classification accuracy of channels inside/outside the SOZ using a wide range of detection parameters and identified the parameters associated with maximum classification accuracy. We found that only three out of twenty patients achieved maximal localization accuracy using conventional HFO detection parameters, and optimal parameter ranges varied significantly across patients. The parameters for amplitude threshold and root-mean-square window had the greatest impact on SOZ localization accuracy; minimum event duration and rejection of false positive events did not significantly affect the results. Using individualized optimal parameters led to substantial improvements in localization accuracy, particularly in reducing false positives from non-SOZ channels. We conclude that optimal HFO detection parameters are patient-specific, often differ from conventional parameters, and have a significant impact on SOZ localization. This suggests that individual variability should be considered when implementing automatic HFO detection as a tool for surgical planning.


2022 ◽  
Vol 71 (2) ◽  
pp. 2901-2921
Author(s):  
Alaa Eisa ◽  
Nora EL-Rashidy ◽  
Mohammad Dahman Alshehri ◽  
Hazem M. El-bakry ◽  
Samir Abdelrazek

2021 ◽  
Vol 11 (18) ◽  
pp. 8599
Author(s):  
Liang Yang ◽  
Guanyu Lai ◽  
Yong Chen ◽  
Zhihui Guo

In this paper, we develop a new online walking controller for biped robots, which integrates a neural-network estimator and an incremental learning mechanism to improve the control performance in dynamic environment. With the aid of an iteration algorithm for updating, some newly incoming data can be used straightforwardly to update into the original well-trained model, in order to avoid a time-consuming retraining procedure. On the other hand, how to maintain the zero-moment-point stability and counteract the effect of yaw moment simultaneously is also a key technical problem to be addressed. To this end, an interval type-2 fuzzy weight identifier is newly developed, which assigns weight for each walking sample to deal with the imbalanced distribution problem of training data. The effectiveness of the proposed control scheme has been verified through a full-dynamics simulation and a practical robot experiment.


Sign in / Sign up

Export Citation Format

Share Document