scholarly journals Body-Worn IMU Human Skeletal Pose Estimation Using a Factor Graph-Based Optimization Framework

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6887
Author(s):  
Timothy McGrath ◽  
Leia Stirling

Traditionally, inertial measurement units- (IMU) based human joint angle estimation requires a priori knowledge about sensor alignment or specific calibration motions. Furthermore, magnetometer measurements can become unreliable indoors. Without magnetometers, however, IMUs lack a heading reference, which leads to unobservability issues. This paper proposes a magnetometer-free estimation method, which provides desirable observability qualities under joint kinematics that sufficiently excite the lower body degrees of freedom. The proposed lower body model expands on the current self-calibrating human-IMU estimation literature and demonstrates a novel knee hinge model, the inclusion of segment length anthropometry, segment cross-leg length discrepancy, and the relationship between the knee axis and femur/tibia segment. The maximum a posteriori problem is formulated as a factor graph and inference is performed via post-hoc, on-manifold global optimization. The method is evaluated (N = 12) for a prescribed human motion profile task. Accuracy of derived knee flexion/extension angle (4.34∘ root mean square error (RMSE)) without magnetometers is similar to current state-of-the-art with magnetometer use. The developed framework can be expanded for modeling additional joints and constraints.

2020 ◽  
Vol 1 (1) ◽  
pp. 93-102
Author(s):  
Carsten Strzalka ◽  
◽  
Manfred Zehn ◽  

For the analysis of structural components, the finite element method (FEM) has become the most widely applied tool for numerical stress- and subsequent durability analyses. In industrial application advanced FE-models result in high numbers of degrees of freedom, making dynamic analyses time-consuming and expensive. As detailed finite element models are necessary for accurate stress results, the resulting data and connected numerical effort from dynamic stress analysis can be high. For the reduction of that effort, sophisticated methods have been developed to limit numerical calculations and processing of data to only small fractions of the global model. Therefore, detailed knowledge of the position of a component’s highly stressed areas is of great advantage for any present or subsequent analysis steps. In this paper an efficient method for the a priori detection of highly stressed areas of force-excited components is presented, based on modal stress superposition. As the component’s dynamic response and corresponding stress is always a function of its excitation, special attention is paid to the influence of the loading position. Based on the frequency domain solution of the modally decoupled equations of motion, a coefficient for a priori weighted superposition of modal von Mises stress fields is developed and validated on a simply supported cantilever beam structure with variable loading positions. The proposed approach is then applied to a simplified industrial model of a twist beam rear axle.


2021 ◽  
Vol 4 (1) ◽  
pp. 251524592095492
Author(s):  
Marco Del Giudice ◽  
Steven W. Gangestad

Decisions made by researchers while analyzing data (e.g., how to measure variables, how to handle outliers) are sometimes arbitrary, without an objective justification for choosing one alternative over another. Multiverse-style methods (e.g., specification curve, vibration of effects) estimate an effect across an entire set of possible specifications to expose the impact of hidden degrees of freedom and/or obtain robust, less biased estimates of the effect of interest. However, if specifications are not truly arbitrary, multiverse-style analyses can produce misleading results, potentially hiding meaningful effects within a mass of poorly justified alternatives. So far, a key question has received scant attention: How does one decide whether alternatives are arbitrary? We offer a framework and conceptual tools for doing so. We discuss three kinds of a priori nonequivalence among alternatives—measurement nonequivalence, effect nonequivalence, and power/precision nonequivalence. The criteria we review lead to three decision scenarios: Type E decisions (principled equivalence), Type N decisions (principled nonequivalence), and Type U decisions (uncertainty). In uncertain scenarios, multiverse-style analysis should be conducted in a deliberately exploratory fashion. The framework is discussed with reference to published examples and illustrated with the help of a simulated data set. Our framework will help researchers reap the benefits of multiverse-style methods while avoiding their pitfalls.


2021 ◽  
pp. 219256822110060
Author(s):  
Jun-Xin Chen ◽  
Yun-He Li ◽  
Jian Wen ◽  
Zhen Li ◽  
Bin-Sheng Yu ◽  
...  

Study Design: A biomechanical study. Objectives: The purpose of this study was to investigate the effects of cruciform and square incisions of annulus fibrosus (AF) on the mechanical stability of bovine intervertebral disc (IVD) in multiple degrees of freedom. Methods: Eight bovine caudal IVD motion segments (bone-disc-bone) were obtained from the local abattoir. Cruciform and square incisions were made at the right side of the specimen’s annulus using a surgical scalpel. Biomechanical testing of three-dimensional 6 degrees of freedom was then performed on the bovine caudal motion segments using the mechanical testing and simulation (MTS) machine. Force, displacement, torque and angle were recorded synchronously by the MTS system. P value <.05 was considered statistically significant. Results: Cruciform and square incisions of the AF reduced both axial compressive and torsional stiffness of the IVD and were significantly lower than those of the intact specimens ( P < .01). Left-side axial torsional stiffness of the cruciform incision was significantly higher than a square incision ( P < .01). Neither incision methods impacted flexional-extensional stiffness or lateral-bending stiffness. Conclusions: The cruciform and square incisions of the AF obviously reduced axial compression and axial rotation, but they did not change the flexion-extension and lateral-bending stiffness of the bovine caudal IVD. This mechanical study will be meaningful for the development of new approaches to AF repair and the rehabilitation of the patients after receiving discectomy.


Author(s):  
B Ashby ◽  
C Bortolozo ◽  
A Lukyanov ◽  
T Pryer

Summary In this article, we present a goal-oriented adaptive finite element method for a class of subsurface flow problems in porous media, which exhibit seepage faces. We focus on a representative case of the steady state flows governed by a nonlinear Darcy–Buckingham law with physical constraints on subsurface-atmosphere boundaries. This leads to the formulation of the problem as a variational inequality. The solutions to this problem are investigated using an adaptive finite element method based on a dual-weighted a posteriori error estimate, derived with the aim of reducing error in a specific target quantity. The quantity of interest is chosen as volumetric water flux across the seepage face, and therefore depends on an a priori unknown free boundary. We apply our method to challenging numerical examples as well as specific case studies, from which this research originates, illustrating the major difficulties that arise in practical situations. We summarise extensive numerical results that clearly demonstrate the designed method produces rapid error reduction measured against the number of degrees of freedom.


Author(s):  
Yujiang Xiang ◽  
Jasbir S. Arora ◽  
Salam Rahmatalla ◽  
Hyun-Joon Chung ◽  
Rajan Bhatt ◽  
...  

Human carrying is simulated in this work by using a skeletal digital human model with 55 degrees of freedom (DOFs). Predictive dynamics approach is used to predict the carrying motion with symmetric and asymmetric loads. In this process, the model predicts joints dynamics using optimization schemes and task-based physical constraints. The results indicated that the model can realistically match human motion and ground reaction forces data during symmetric and asymmetric load carrying task. With such prediction capability the model could be used for biomedical and ergonomic studies.


Robotica ◽  
2018 ◽  
Vol 37 (1) ◽  
pp. 109-140 ◽  
Author(s):  
V. Janardhan ◽  
R. Prasanth Kumar

SUMMARYDitch crossing is one of the essential capabilities required for a biped robot in disaster management and search and rescue operations. Present work focuses on crossing a wide ditch with landing uncertainties by an under-actuated planar biped robot with five degrees of freedom. We consider a ditch as wide for a robot when the ankle to ankle stretch required to cross it is at least equal to the leg length of the robot. Since locomotion in uncertain environments requires real-time planning, in this paper, we present a new approach for generating real-time joint trajectories using control constraints not explicitly dependent on time, considering impact, dynamic balance, and friction. As part of the approach, we introduce a novel concept called the point of feasibility for bringing the biped robot to complete rest at the end of ditch crossing. We present a study on the influence of initial posture on landing impact and net energy consumption. Through simulations, we found the best initial postures to efficiently cross a wide ditch of width 1.05 m, with less impact and without singularities. Finally, we demonstrate the advantage of the proposed approach to cross a wide ditch when the surface friction is not same on both sides of the ditch.


2018 ◽  
Vol 37 (2) ◽  
pp. 103-118 ◽  
Author(s):  
Huiju Park ◽  
Rumit Singh Kakar ◽  
Jie Pei ◽  
Joshua M. Tome ◽  
Jeffrey Stull

The authors conducted biomechanical tests with 21 firefighters and found that there is a significant correlation between boot height and lower body mobility and that using a fixed boot height mandated by National Fire Protection Association 1971 standard decreased lower body ranges of motion during various firefighters’ job-related tasks. Statistical analysis of large anthropometric data also shows a fixed boot height cannot accommodate a wide range of firefighters’ leg length. These findings indicate that shorter firefighters are likely to have limited lower body mobility due to reduced clearance between the knee and top of the boot and thus decreased space causing greater mechanical binding between multiple layers of turnout pants. The authors discovered a greater negative impact of fixed length of self-contained breathing apparatus cylinder on short firefighters on their upper body mobility, evidenced by limited range of motion in neck extension and lumbopelvic flexion while carrying fire gear compared to without any fire gear.


1995 ◽  
Vol 115 (1) ◽  
pp. 88-89
Author(s):  
Masaaki Shibata ◽  
Yoshiyuki Ohmori ◽  
Toshiyuki Murakami ◽  
Kouhei Ohnishi

2010 ◽  
Vol 10 (1) ◽  
pp. 183-211 ◽  
Author(s):  
S. Ceccherini ◽  
U. Cortesi ◽  
S. Del Bianco ◽  
P. Raspollini ◽  
B. Carli

Abstract. The combination of data obtained with different sensors (data fusion) is a powerful technique that can provide target products of the best quality in terms of precision and accuracy, as well as spatial and temporal coverage and resolution. In this paper the results are presented of the data fusion of measurements of ozone vertical profile performed by two space-borne interferometers (IASI on METOP and MIPAS on ENVISAT) using the new measurement-space-solution method. With this method both the loss of information due to interpolation and the propagation of possible biases (caused by a priori information) are avoided. The data fusion products are characterized by means of retrieval errors, information gain, averaging kernels and number of degrees of freedom. The analysis is performed both on simulated and real measurements and the results demonstrate and quantify the improvement of data fusion products with respect to measurements of a single instrument.


Author(s):  
Fazia sbargoud ◽  
Mohamed Djeha ◽  
Mohamed Guiatni ◽  
Noureddine Ababou

Among the different bio-signals modalities, Electromyographic signal (EMG) has been one of the frequently used signals in the bio-robotics applications field. This is due to the fact that the EMG reflects directly the muscle activity of the user following the human motion intention. Consequently, the decoding of this intention is an essential task for controlling devices such as prosthetic hands and exoskeletons, based on EMG signals. This paper deals with the processing of EMG signals of the forearm muscles, in order to control two degrees of freedom (2 DoFs) robotic hand. The main contribution of this paper is the proposal of a hybrid approach that combines a pattern and a non-pattern recognition-based strategy. The proposed approach aims to take advantage of both strategies and overcome their shortcomings leading to a better analysis of the user movement intention. The EMG recorded signals are processed for feature extraction based on a Wavelet Packet Decomposition (WPD) method and classification using an Artificial Neural Network (ANN). Furthermore, we investigate the effect of the various parameters such as the applied force level, the number of the EMG channels and the window length of the EMG signal. The proposed approach is validated experimentally under realistic conditions. Very interesting results have been obtained for user intention decoding.


Sign in / Sign up

Export Citation Format

Share Document