scholarly journals Low-Cost Unattended Design of Miniaturized 4 × 4 Butler Matrices with Nonstandard Phase Differences

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 851
Author(s):  
Adrian Bekasiewicz ◽  
Slawomir Koziel

Design of Butler matrices dedicated to Internet of Things and 5th generation (5G) mobile systems—where small size and high performance are of primary concern—is a challenging task that often exceeds capabilities of conventional techniques. Lack of appropriate, unified design approaches is a serious bottleneck for the development of Butler structures for contemporary applications. In this work, a low-cost bottom-up procedure for rigorous and unattended design of miniaturized 4 × 4 Butler matrices is proposed. The presented approach exploits numerical algorithms (governed by a set of suitable objective functions) to control synthesis, implementation, optimization, and fine-tuning of the structure and its individual building blocks. The framework is demonstrated using two miniaturized matrices with nonstandard output-port phase differences. Numerical results indicate that the computational cost of the design process using the presented framework is over 80% lower compared to the conventional approach. The footprints of optimized matrices are only 696 and 767 mm2, respectively. Small size and operation frequency of around 2.6 GHz make the circuits of potential use for mobile devices dedicated to work within a sub-6 GHz 5G spectrum. Both structures have been benchmarked against the state-of-the-art designs from the literature in terms of performance and size. Measurements of the fabricated Butler matrix prototype are also provided.

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2648 ◽  
Author(s):  
Antonio Delle Femine ◽  
Daniele Gallo ◽  
Carmine Landi ◽  
Mario Luiso

The widespread diffusion of Phasor Measurement Units (PMUs) is a becoming a need for the development of the “smartness” of power systems. However, PMU with accuracy compliant to the standard Institute of Electrical and Electronics Engineers (IEEE) C37.118.1-2011 and its amendment IEEE Std C37.118.1a-2014 have typically costs that constitute a brake for their diffusion. Therefore, in this paper, the design of a low-cost implementation of a PMU is presented. The low cost approach is followed in the design of all the building blocks of the PMU. A key feature of the presented approach is that the data acquisition, data processing and data communication are integrated in a single low cost microcontroller. The synchronization is obtained using a simple external Global Positioning System receiver, which does not provide a disciplined clock. The synchronization of sampling frequency, and thus of the measurement, to the Universal Time Coordinated, is obtained by means of a suitable signal processing technique. For this implementation, the Interpolated Discrete Fourier Transform has been used as the synchrophasor estimation algorithm. A thorough metrological characterization of the realized prototype in different test conditions proposed by the standards, using a high performance PMU calibrator, is also shown.


2020 ◽  
Vol 8 (10) ◽  
pp. 793
Author(s):  
Demián García-Violini ◽  
Nicolás Faedo ◽  
Fernando Jaramillo-Lopez ◽  
John V. Ringwood

The design of controllers for wave energy devices has evolved from early monochromatic impedance-matching methods to complex numerical algorithms that can handle panchromatic seas, constraints, and nonlinearity. However, the potential high performance of such numerical controller comes at a computational cost, with some algorithms struggling to implement in real-time, and issues surround convergence of numerical optimisers. Within the broader area of control engineering, practitioners have always displayed a fondness for simple and intuitive controllers, as evidenced by the continued popularity of the ubiquitous PID controller. Recently, a number of energy-maximising wave energy controllers have been developed based on relatively simple strategies, stemming from the fundamentals behind impedance-matching. This paper documents this set of (5) controllers, which have been developed over the period 2010–2020, and compares and contrasts their characteristics, in terms of energy-maximising performance, the handling of physical constraints, and computational complexity. The comparison is carried out both analytically and numerically, including a detailed case study, when considering a state-of-the-art CorPower-like device.


GigaScience ◽  
2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Julien Tremblay ◽  
Etienne Yergeau

Abstract Background With the advent of high-throughput sequencing, microbiology is becoming increasingly data-intensive. Because of its low cost, robust databases, and established bioinformatic workflows, sequencing of 16S/18S/ITS ribosomal RNA (rRNA) gene amplicons, which provides a marker of choice for phylogenetic studies, has become ubiquitous. Many established end-to-end bioinformatic pipelines are available to perform short amplicon sequence data analysis. These pipelines suit a general audience, but few options exist for more specialized users who are experienced in code scripting, Linux-based systems, and high-performance computing (HPC) environments. For such an audience, existing pipelines can be limiting to fully leverage modern HPC capabilities and perform tweaking and optimization operations. Moreover, a wealth of stand-alone software packages that perform specific targeted bioinformatic tasks are increasingly accessible, and finding a way to easily integrate these applications in a pipeline is critical to the evolution of bioinformatic methodologies. Results Here we describe AmpliconTagger, a short rRNA marker gene amplicon pipeline coded in a Python framework that enables fine tuning and integration of virtually any potential rRNA gene amplicon bioinformatic procedure. It is designed to work within an HPC environment, supporting a complex network of job dependencies with a smart-restart mechanism in case of job failure or parameter modifications. As proof of concept, we present end results obtained with AmpliconTagger using 16S, 18S, ITS rRNA short gene amplicons and Pacific Biosciences long-read amplicon data types as input. Conclusions Using a selection of published algorithms for generating operational taxonomic units and amplicon sequence variants and for computing downstream taxonomic summaries and diversity metrics, we demonstrate the performance and versatility of our pipeline for systematic analyses of amplicon sequence data.


Author(s):  
D. E. Keyes ◽  
H. Ltaief ◽  
G. Turkiyyah

A traditional goal of algorithmic optimality, squeezing out flops, has been superseded by evolution in architecture. Flops no longer serve as a reasonable proxy for all aspects of complexity. Instead, algorithms must now squeeze memory, data transfers, and synchronizations, while extra flops on locally cached data represent only small costs in time and energy. Hierarchically low-rank matrices realize a rarely achieved combination of optimal storage complexity and high-computational intensity for a wide class of formally dense linear operators that arise in applications for which exascale computers are being constructed. They may be regarded as algebraic generalizations of the fast multipole method. Methods based on these hierarchical data structures and their simpler cousins, tile low-rank matrices, are well proportioned for early exascale computer architectures, which are provisioned for high processing power relative to memory capacity and memory bandwidth. They are ushering in a renaissance of computational linear algebra. A challenge is that emerging hardware architecture possesses hierarchies of its own that do not generally align with those of the algorithm. We describe modules of a software toolkit, hierarchical computations on manycore architectures, that illustrate these features and are intended as building blocks of applications, such as matrix-free higher-order methods in optimization and large-scale spatial statistics. Some modules of this open-source project have been adopted in the software libraries of major vendors. This article is part of a discussion meeting issue ‘Numerical algorithms for high-performance computational science’.


Author(s):  
Xianhao Le ◽  
Qiongfeng Shi ◽  
Philippe Vachon ◽  
Eldwin Jiaqiang Ng ◽  
Chengkuo Lee

Abstract The rapid development of the fifth-generation mobile networks (5G) and Internet of Things (IoT) is inseparable from a large number of miniature, low-cost, and low-power sensors and actuators. Piezoelectric micro-electromechanical system (MEMS) devices, fabricated by micromachining technologies, provide a versatile platform for various high-performance sensors, actuators, energy harvesters, filters and oscillators (main building blocks in radio frequency (RF) front-ends for wireless communication). In this paper, we provide a comprehensive review of the working mechanism, structural design, and diversified applications of piezoelectric MEMS devices. Firstly, various piezoelectric MEMS sensors are introduced, including contact and non-contact types, aiming for the applications in physical, chemical and biological sensing. This is followed by a presentation of the advances in piezoelectric MEMS actuators for different application scenarios. Meanwhile, piezoelectric MEMS energy harvesters, with the ability to power other MEMS devices, are orderly enumerated. Furthermore, as a representative of piezoelectric resonators, Lamb wave resonators are exhibited with manifold performance improvements. Finally, the development trends of wearable and implantable piezoelectric MEMS devices are discussed.


Author(s):  
Richard S. Trask

In nature, both material and structure are formed according to the principles of biologically controlled self-assembly, a process defined as the spontaneous and reversible ordering of small molecular building blocks under the influence of non-covalent, static interactions. The orientation and distribution of reinforcing entities in engineering composites is key to enabling structural efficiency, yet the architecture remains simplistic when compared to the distinctive and unique hierarchies found in Nature. These biological ‘composite’ materials achieve such configurations by accurately controlling the orientation of anisotropic nano- and micro-sized ‘building blocks’, thereby reinforcing the material in specific directions to carry the multidirectional external loads at different length scales. Capturing the design principles underlying the exquisite architecture of such biological materials will overcome many of the mechanical limitations of current engineering composites. The scientific vision for this study is the development of a novel and highly ordered complex architecture fibrous material for additive layer manufacturing. Using novel chemistry and controlled field-effect assembly, functionally graded, stiffness modulated architectures, analogous to those found in nature, are synthesised to realise enhanced mechanical performance, multi-dimensional composite structures. To achieve this, both hierarchical discontinuous fibres (glass fibres with ZnO nanrods) and a new type of ultrasonic device has been developed. The two studies reported here have been successfully employed to manufacture and mechanically characterise the fibres and aligned discontinuous fibres. A 43 % improvement in strength was observed for samples tested parallel to the direction of the fibre reinforcement over those strained normal to the fibre direction, despite the relatively low volume percentage of the reinforcement phase. This technique shows great potential for the low cost instantaneous alignment of structural reinforcement to generate the light-weight high performance structures required for the future.


2020 ◽  
Vol 10 (15) ◽  
pp. 5117
Author(s):  
Mohammad Taghi Ahmadi ◽  
Neda Mousavi ◽  
Truong Khang Nguyen ◽  
Seyed Saeid Rahimian Koloor ◽  
Michal Petrů

All around the world, researchers have raised concerns about the superlative geometrical, electronic, thermal, chemical and mechanical properties of carbon nanoparticles (CNPs). CNPs with low cost, high performance and prominent intrinsic properties have attracted extensive interest for numerous applications in various fields. Although CNPs have been studied mainly as transistors and sensors, they could also be considered as heat producers. However, this option has scarcely been studied. In this research, a CNP-based electro-thermal building block is synthesized by the arc discharge method in a carbonic medium (high-density polyethylene), and its behavior is investigated. It is shaped in the form of a metal–semiconductor–metal structure (MSM) between metallic electrodes, and in addition, the formation of two back-to-back Schottky diodes is analyzed and their use as CNP-based electro-thermal building blocks are reported.


2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


Sign in / Sign up

Export Citation Format

Share Document