scholarly journals A Spatiotemporal-Oriented Deep Ensemble Learning Model to Defend Link Flooding Attacks in IoT Network

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1027
Author(s):  
Yen-Hung Chen ◽  
Yuan-Cheng Lai ◽  
Pi-Tzong Jan ◽  
Ting-Yi Tsai

(1) Background: Link flooding attacks (LFA) are a spatiotemporal attack pattern of distributed denial-of-service (DDoS) that arranges bots to send low-speed traffic to backbone links and paralyze servers in the target area. (2) Problem: The traditional methods to defend against LFA are heuristic and cannot reflect the changing characteristics of LFA over time; the AI-based methods only detect the presence of LFA without considering the spatiotemporal series attack pattern and defense suggestion. (3) Methods: This study designs a deep ensemble learning model (Stacking-based integrated Convolutional neural network–Long short term memory model, SCL) to defend against LFA: (a) combining continuous network status as an input to represent “continuous/combination attacking action” and to help CNN operation to extract features of spatiotemporal attack pattern; (b) applying LSTM to periodically review the current evolved LFA patterns and drop the obsolete ones to ensure decision accuracy and confidence; (c) stacking System Detector and LFA Mitigator module instead of only one module to couple with LFA detection and mediation at the same time. (4) Results: The simulation results show that the accuracy rate of SCL successfully blocking LFA is 92.95%, which is 60.81% higher than the traditional method. (5) Outcomes: This study demonstrates the potential and suggested development trait of deep ensemble learning on network security.

Author(s):  
Shanshan Yu ◽  
Jicheng Zhang ◽  
Ju Liu ◽  
Xiaoqing Zhang ◽  
Yafeng Li ◽  
...  

AbstractIn order to solve the problem of distributed denial of service (DDoS) attack detection in software-defined network, we proposed a cooperative DDoS attack detection scheme based on entropy and ensemble learning. This method sets up a coarse-grained preliminary detection module based on entropy in the edge switch to monitor the network status in real time and report to the controller if any abnormality is found. Simultaneously, a fine-grained precise attack detection module is designed in the controller, and a ensemble learning-based algorithm is utilized to further identify abnormal traffic accurately. In this framework, the idle computing capability of edge switches is fully utilized with the design idea of edge computing to offload part of the detection task from the control plane to the data plane innovatively. Simulation results of two common DDoS attack methods, ICMP and SYN, show that the system can effectively detect DDoS attacks and greatly reduce the southbound communication overhead and the burden of the controller as well as the detection delay of the attacks.


2019 ◽  
Vol 9 (13) ◽  
pp. 2760 ◽  
Author(s):  
Khai Tran ◽  
Thi Phan

Sentiment analysis is an active research area in natural language processing. The task aims at identifying, extracting, and classifying sentiments from user texts in post blogs, product reviews, or social networks. In this paper, the ensemble learning model of sentiment classification is presented, also known as CEM (classifier ensemble model). The model contains various data feature types, including language features, sentiment shifting, and statistical techniques. A deep learning model is adopted with word embedding representation to address explicit, implicit, and abstract sentiment factors in textual data. The experiments conducted based on different real datasets found that our sentiment classification system is better than traditional machine learning techniques, such as Support Vector Machines and other ensemble learning systems, as well as the deep learning model, Long Short-Term Memory network, which has shown state-of-the-art results for sentiment analysis in almost corpuses. Our model’s distinguishing point consists in its effective application to different languages and different domains.


2019 ◽  
Vol 10 (1) ◽  
pp. 205 ◽  
Author(s):  
Chunjun Zheng ◽  
Chunli Wang ◽  
Ning Jia

Speech emotion recognition is a challenging and widely examined research topic in the field of speech processing. The accuracy of existing models in speech emotion recognition tasks is not high, and the generalization ability is not strong. Since the feature set and model design of effective speech directly affect the accuracy of speech emotion recognition, research on features and models is important. Because emotional expression is often correlated with the global features, local features, and model design of speech, it is often difficult to find a universal solution for effective speech emotion recognition. Based on this, the main research purpose of this paper is to generate general emotion features in speech signals from different angles, and use the ensemble learning model to perform emotion recognition tasks. It is divided into the following aspects: (1) Three expert roles of speech emotion recognition are designed. Expert 1 focuses on three-dimensional feature extraction of local signals; expert 2 focuses on extraction of comprehensive information in local data; and expert 3 emphasizes global features: acoustic feature descriptors (low-level descriptors (LLDs)), high-level statistics functionals (HSFs), and local features and their timing relationships. A single-/multiple-level deep learning model that meets expert characteristics is designed for each expert, including convolutional neural network (CNN), bi-directional long short-term memory (BLSTM), and gated recurrent unit (GRU). Convolutional recurrent neural network (CRNN), based on a combination of an attention mechanism, is used for internal training of experts. (2) By designing an ensemble learning model, each expert can play to its own advantages and evaluate speech emotions from different focuses. (3) Through experiments, the performance of various experts and ensemble learning models in emotion recognition is compared in the Interactive Emotional Dyadic Motion Capture (IEMOCAP) corpus and the validity of the proposed model is verified.


2021 ◽  
Author(s):  
Shanshan Yu ◽  
Jicheng Zhang ◽  
Ju Liu ◽  
Xiaoqing Zhang ◽  
Yafeng Li ◽  
...  

Abstract In order to solve the problem of Distributed Denial of Service (DDoS) attack detection in software defined network (SDN), we proposed a cooperative DDoS attack detection scheme based on entropy and ensemble learning. This method sets up a coarse grained initial detection module based on entropy in the edge switch to monitor the network status in real time and report to the controller if any abnormality is found. Simultaneously, a fine grained precise attack detection module is designed in the controller, and a ensemble learning-based algorithm is utilized to further identify abnormal traffic accurately. In this framework, the idle computing capability of edge switches is fully utilized with the design idea of edge computing to offload part of the detection task from the control plane to the data plane innovatively. Simulation results of two common DDoS attack methods, ICMP and SYN, show that the system can effectively detect DDoS attacks and greatly reduce the southbound communication overhead and the burden of the controller as well as the detection delay of the attacks.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Author(s):  
Longxiang Li ◽  
Annelise J. Blomberg ◽  
Rebecca A. Stern ◽  
Choong-Min Kang ◽  
Stefania Papatheodorou ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 924
Author(s):  
Moslem Imani ◽  
Hoda Fakour ◽  
Wen-Hau Lan ◽  
Huan-Chin Kao ◽  
Chi Ming Lee ◽  
...  

Despite the great significance of precisely forecasting the wind speed for development of the new and clean energy technology and stable grid operators, the stochasticity of wind speed makes the prediction a complex and challenging task. For improving the security and economic performance of power grids, accurate short-term wind power forecasting is crucial. In this paper, a deep learning model (Long Short-term Memory (LSTM)) has been proposed for wind speed prediction. Knowing that wind speed time series is nonlinear stochastic, the mutual information (MI) approach was used to find the best subset from the data by maximizing the joint MI between subset and target output. To enhance the accuracy and reduce input characteristics and data uncertainties, rough set and interval type-2 fuzzy set theory are combined in the proposed deep learning model. Wind speed data from an international airport station in the southern coast of Iran Bandar-Abbas City was used as the original input dataset for the optimized deep learning model. Based on the statistical results, the rough set LSTM (RST-LSTM) model showed better prediction accuracy than fuzzy and original LSTM, as well as traditional neural networks, with the lowest error for training and testing datasets in different time horizons. The suggested model can support the optimization of the control approach and the smooth procedure of power system. The results confirm the superior capabilities of deep learning techniques for wind speed forecasting, which could also inspire new applications in meteorology assessment.


Sign in / Sign up

Export Citation Format

Share Document