scholarly journals Measuring Nanoscale Distances by Structured Illumination Microscopy and Image Cross-Correlation Spectroscopy (SIM-ICCS)

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2010
Author(s):  
Isotta Cainero ◽  
Elena Cerutti ◽  
Mario Faretta ◽  
Gaetano Ivan Dellino ◽  
Pier Giuseppe Pelicci ◽  
...  

Since the introduction of super-resolution microscopy, there has been growing interest in quantifying the nanoscale spatial distributions of fluorescent probes to better understand cellular processes and their interactions. One way to check if distributions are correlated or not is to perform colocalization analysis of multi-color acquisitions. Among all the possible methods available to study and quantify the colocalization between multicolor images, there is image cross-correlation spectroscopy (ICCS). The main advantage of ICCS, in comparison with other co-localization techniques, is that it does not require pre-segmentation of the sample into single objects. Here we show that the combination of structured illumination microscopy (SIM) with ICCS (SIM-ICCS) is a simple approach to quantify colocalization and measure nanoscale distances from multi-color SIM images. We validate the SIM-ICCS analysis on SIM images of optical nanorulers, DNA-origami-based model samples containing fluorophores of different colors at a distance of 80 nm. The SIM-ICCS analysis is compared with an object-based analysis performed on the same samples. Finally, we show that SIM-ICCS can be used to quantify the nanoscale spatial distribution of functional nuclear sites in fixed cells.

2021 ◽  
Vol 9 ◽  
Author(s):  
Tianyu Zhao ◽  
Zhaojun Wang ◽  
Tongsheng Chen ◽  
Ming Lei ◽  
Baoli Yao ◽  
...  

Super-resolution microscopy surpasses the diffraction limit to enable the observation of the fine details in sub-cellular structures and their dynamics in diverse biological processes within living cells. Structured illumination microscopy (SIM) uses a relatively low illumination light power compared with other super-resolution microscopies and has great potential to meet the demands of live-cell imaging. However, the imaging acquisition and reconstruction speeds limit its further applications. In this article, recent developments all targeted at improving the overall speed of SIM are reviewed. These comprise both hardware and software improvements, which include a reduction in the number of raw images, GPU acceleration, deep learning and the spatial domain reconstruction. We also discuss the application of these developments in live-cell imaging.


2019 ◽  
Author(s):  
Anna Maria Ranieri ◽  
Kathryn Leslie ◽  
Song Huang ◽  
Stefano Stagni ◽  
Denis Jacquemin ◽  
...  

There is a lack of molecular probes for imaging bacteria, in comparison to the array of such tools available for the imaging of mammalian cells. This is especially so for correlative probes, which are proving to be powerful tools for enhancing the imaging of live cells. In this work a platinum(II)-naphthalimide molecule has been developed to extend small molecule correlative probes to bacterial imaging. The probe was designed to exploit the naphthalimide moiety as a luminescent probe for super-resolution microscopy, with the platinum(II) centre enabling visualisation of the complex with ion nanoscopy. Photophysical characterisation and theoretical studies confirmed that the emission properties of the naphthalimide are not altered by the platinum(II) centre. Structured illumination microscopy (SIM) imaging on live <i>Bacillus cereus</i>revealed that the platinum(II) centre does not change the sub-cellular localisation of the naphthalimide, and confirmed the suitability of the probe for super-resolution microscopy. NanoSIMS analysis of the sample was used to monitor the uptake of the platinum(II) complex within the bacteria and proved the correlative action of the probe. The successful combination of these two probe moieties with no perturbation of their individual detection introduces a platform for a versatile range of new correlative probes for bacteria.


Author(s):  
Kirti Prakash

We report that high-density single-molecule super-resolution microscopy can be achieved with a conventional epifluorescence microscope set-up and a mercury arc lamp. The configuration termed as laser-free super-resolution microscopy (LFSM) is an extension of single-molecule localization microscopy (SMLM) techniques and allows single molecules to be switched on and off (a phenomenon termed as ‘blinking’), detected and localized. The use of a short burst of deep blue excitation (350–380 nm) can be further used to reactivate the blinking, once the blinking process has slowed or stopped. A resolution of 90 nm is achieved on test specimens (mouse and amphibian meiotic chromosomes). Finally, we demonstrate that stimulated emission depletion and LFSM can be performed on the same biological sample using a simple commercial mounting medium. It is hoped that this type of correlative imaging will provide a basis for a further enhanced resolution. This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 1)’.


2020 ◽  
Author(s):  
Aaron Blanchard ◽  
J. Dale Combs ◽  
Joshua Brockman ◽  
Anna Kellner ◽  
Roxanne Glazier ◽  
...  

Abstract Many cellular processes, including cell division, development, and cell migration require spatially and temporally coordinated forces transduced by cell surface receptors. Nucleic acid-based molecular tension probes allow one to quantify and visualize the piconewton (pN) forces applied by these receptors. Building on this technology, we recently imaged DNA tension probes using fluorescence polarization imaging to map the magnitude and 3D orientation of receptor forces with diffraction limited resolution (~ 250 nm). Further improvements in spatial resolution are desirable as many force-sensing receptors are organized at the nano-scale in supramolecular complexes such as focal adhesions. Here, we show that structured illumination microscopy (SIM), a super-resolution technique, can be used to perform super-resolution molecular force microscopy (MFM). Using SIM-MFM, we generate the highest resolution maps of both the magnitude and orientation of the pN traction forces applied by cells. We apply SIM-MFM to map platelet and fibroblast integrins forces, as well as T cell receptor forces. The method reveals that platelets dynamically re-arrange the orientation of their integrin forces during activation. Monte Carlo simulations validated the results and provided analysis of the sources of noise. Importantly, we envision that SIM-MFM will be broadly adopted by the cell biology and mechanobiology communities because it can be implemented on any standard SIM microscope without hardware modifications.


2019 ◽  
Vol 116 (19) ◽  
pp. 9586-9591 ◽  
Author(s):  
Raphaël Turcotte ◽  
Yajie Liang ◽  
Masashi Tanimoto ◽  
Qinrong Zhang ◽  
Ziwei Li ◽  
...  

Cells in the brain act as components of extended networks. Therefore, to understand neurobiological processes in a physiological context, it is essential to study them in vivo. Super-resolution microscopy has spatial resolution beyond the diffraction limit, thus promising to provide structural and functional insights that are not accessible with conventional microscopy. However, to apply it to in vivo brain imaging, we must address the challenges of 3D imaging in an optically heterogeneous tissue that is constantly in motion. We optimized image acquisition and reconstruction to combat sample motion and applied adaptive optics to correcting sample-induced optical aberrations in super-resolution structured illumination microscopy (SIM) in vivo. We imaged the brains of live zebrafish larvae and mice and observed the dynamics of dendrites and dendritic spines at nanoscale resolution.


2019 ◽  
Vol 159 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Alžběta Němečková ◽  
Christina Wäsch ◽  
Veit Schubert ◽  
Takayoshi Ishii ◽  
Eva Hřibová ◽  
...  

Visualizing the spatiotemporal organization of the genome will improve our understanding of how chromatin structure and function are intertwined. Here, we describe a further development of the CRISPR/Cas9-based RNA-guided endonuclease-in situ labeling (RGEN-ISL) method. RGEN-ISL allowed the differentiation between vertebrate-type (TTAGGG)n and Arabidopsis-type (TTTAGGG)n telomere repeats. Using maize as an example, we established a combination of RGEN-ISL, immunostaining, and EdU labeling to visualize in situ specific repeats, histone marks, and DNA replication sites, respectively. The effects of the non-denaturing RGEN-ISL and standard denaturing FISH on the chromatin structure were compared using super-resolution microscopy. 3D structured illumination microscopy revealed that denaturation and acetic acid fixation impaired and flattened the chromatin. The broad range of adaptability of RGEN-ISL to different combinations of methods has the potential to advance the field of chromosome biology.


2016 ◽  
Vol 09 (03) ◽  
pp. 1630010 ◽  
Author(s):  
Jianling Chen ◽  
Caimin Qiu ◽  
Minghai You ◽  
Xiaogang Chen ◽  
Hongqin Yang ◽  
...  

Optical microscopy allows us to observe the biological structures and processes within living cells. However, the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light diffraction. Structured illumination microscopy (SIM), a type of new emerging super-resolution microscopy, doubles the spatial resolution by illuminating the specimen with a patterned light, and the sample and light source requirements of SIM are not as strict as the other super-resolution microscopy. In addition, SIM is easier to combine with the other imaging techniques to improve their imaging resolution, leading to the developments of diverse types of SIM. SIM has great potential to meet the various requirements of living cells imaging. Here, we review the recent developments of SIM and its combination with other imaging techniques.


Author(s):  
Lucia C. S. Wunderlich ◽  
Florian Ströhl ◽  
Stefan Ströhl ◽  
Oliver Vanderpoorten ◽  
Luca Mascheroni ◽  
...  

AbstractImmunofluorescence microscopy is routinely used in the diagnosis of and research on renal impairments. However, this highly specific technique is restricted in its maximum resolution to about 250 nm in the lateral and 700 nm in the axial directions and thus not sufficient to investigate the fine subcellular structure of the kidney’s glomerular filtration barrier. In contrast, electron microscopy offers high resolution, but this comes at the cost of poor preservation of immunogenic epitopes and antibody penetration alongside a low throughput. Many of these drawbacks were overcome with the advent of super-resolution microscopy methods. So far, four different super-resolution approaches have been used to study the kidney: single-molecule localization microscopy (SMLM), stimulated emission depletion (STED) microscopy, structured illumination microscopy (SIM), and expansion microscopy (ExM), however, using different preservation methods and widely varying labelling strategies. In this work, all four methods were applied and critically compared on kidney slices obtained from samples treated with the most commonly used preservation technique: fixation by formalin and embedding in paraffin (FFPE). Strengths and weaknesses, as well as the practicalities of each method, are discussed to enable users of super-resolution microscopy in renal research make an informed decision on the best choice of technique. The methods discussed enable the efficient investigation of biopsies stored in kidney banks around the world.


2016 ◽  
Vol 214 (7) ◽  
pp. 789-791 ◽  
Author(s):  
Shi-Bin Hu ◽  
Run-Wen Yao ◽  
Ling-Ling Chen

The nuclear body paraspeckle is built on the lncRNA Neat1 and plays important roles in gene regulation. In this issue, West et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201601071) use super-resolution structured illumination microscopy to show that paraspeckles are organized in a core-shell spheroidal structure composed of Neat1 and seven proteins.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aaron Blanchard ◽  
J. Dale Combs ◽  
Joshua M. Brockman ◽  
Anna V. Kellner ◽  
Roxanne Glazier ◽  
...  

AbstractMany cellular processes, including cell division, development, and cell migration require spatially and temporally coordinated forces transduced by cell-surface receptors. Nucleic acid-based molecular tension probes allow one to visualize the piconewton (pN) forces applied by these receptors. Building on this technology, we recently developed molecular force microscopy (MFM) which uses fluorescence polarization to map receptor force orientation with diffraction-limited resolution (~250 nm). Here, we show that structured illumination microscopy (SIM), a super-resolution technique, can be used to perform super-resolution MFM. Using SIM-MFM, we generate the highest resolution maps of both the magnitude and orientation of the pN traction forces applied by cells. We apply SIM-MFM to map platelet and fibroblast integrin forces, as well as T cell receptor forces. Using SIM-MFM, we show that platelet traction force alignment occurs on a longer timescale than adhesion. Importantly, SIM-MFM can be implemented on any standard SIM microscope without hardware modifications.


Sign in / Sign up

Export Citation Format

Share Document