scholarly journals Mobile Network Performance and Technical Feasibility of LTE-Powered Unmanned Aerial Vehicle

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2848
Author(s):  
Muhammad Aidiel Zulkifley ◽  
Mehran Behjati ◽  
Rosdiadee Nordin ◽  
Mohamad Shanudin Zakaria

Conventional and license-free radio-controlled drone activities are limited to a line-of-sight (LoS) operational range. One of the alternatives to operate the drones beyond the visual line-of-sight (BVLoS) range is replacing the drone wireless communications system from the conventional industrial, scientific, and medical (ISM) radio band to a licensed cellular-connected system. The Long Term Evolution (LTE) technology that has been established for the terrestrial area allows command-and-control and payload communications between drone and ground station in real-time. However, with increasing height above the ground, the radio environment changes, and utilizing terrestrial cellular networks for drone communications may face new challenges. In this regard, this paper aims to develop an LTE-based control system prototype for low altitude small drones and investigate the feasibility and performance of drone cellular connectivity at different altitudes with measuring parameters such as latency, handover, and signal strength. The measurement results have shown that by increasing flight height from ground to 170 m the received signal power and the signal quality levels were reduced by 20 dBm and 10 dB respectively, the downlink data rate decreased to 70%, and latency increased up to 94 ms. It is concluded that although the existing LTE network can provide a minimum requirement for drone cellular connectivity, further improvements are still needed to enhance aerial coverage, eliminate interference, and reduce network latency.

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2125
Author(s):  
Jatin Upadhyay ◽  
Abhishek Rawat ◽  
Dipankar Deb

Autonomous unmanned aerial vehicles work seamlessly within the GPS signal range, but their performance deteriorates in GPS-denied regions. This paper presents a unique collaborative computer vision-based approach for target tracking as per the image’s specific location of interest. The proposed method tracks any object without considering its properties like shape, color, size, or pattern. It is required to keep the target visible and line of sight during the tracking. The method gives freedom of selection to a user to track any target from the image and form a formation around it. We calculate the parameters like distance and angle from the image center to the object for the individual drones. Among all the drones, the one with a significant GPS signal strength or nearer to the target is chosen as the master drone to calculate the relative angle and distance between an object and other drones considering approximate Geo-location. Compared to actual measurements, the results of tests done on a quadrotor UAV frame achieve 99% location accuracy in a robust environment inside the exact GPS longitude and latitude block as GPS-only navigation methods. The individual drones communicate to the ground station through a telemetry link. The master drone calculates the parameters using data collected at ground stations. Various formation flying methods help escort other drones to meet the desired objective with a single high-resolution first-person view (FPV) camera. The proposed method is tested for Airborne Object Target Tracking (AOT) aerial vehicle model and achieves higher tracking accuracy.


2007 ◽  
Author(s):  
Luis N. Gonzalez Castro ◽  
Amy R. Pritchett ◽  
Daniel P. J. Bruneau ◽  
Eric N. Johnson
Keyword(s):  

TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 37-46 ◽  
Author(s):  
PEDRO E.G. LOUREIRO ◽  
SANDRINE DUARTE ◽  
DMITRY V. EVTUGUIN ◽  
M. GRAÇA V.S. CARVALHO

This study puts particular emphasis on the role of copper ions in the performance of hydrogen peroxide bleaching (P-stage). Owing to their variable levels across the bleaching line due to washing filtrates, bleaching reagents, and equipment corrosion, these ions can play a major role in hydrogen peroxide decomposition and be detrimental to polysaccharide integrity. In this study, a Cu-contaminated D0(EOP)D1 prebleached pulp was subjected to an acidic washing (A-stage) or chelation (Q-stage) before the alkaline P-stage. The objective was to understand the isolated and combined role of copper ions in peroxide bleaching performance. By applying an experimental design, it was possible to identify the main effects of the pretreatment variables on the extent of metals removal and performance of the P-stage. The acid treatment was unsuccessful in terms of complete copper removal, magnesium preservation, and control of hydrogen peroxide consumption in the following P-stage. Increasing reaction temperature and time of the acidic A-stage improved the brightness stability of the D0(EOP)D1AP bleached pulp. The optimum conditions for chelation pretreatment to maximize the brightness gains obtained in the subsequent P-stage with the lowest peroxide consumption were 0.4% diethylenetriaminepentaacetic acid (DTPA), 80ºC, and 4.5 pH.


2019 ◽  
Vol 8 (4) ◽  
pp. 9538-9542

In vision of searching for the right Unmanned Aerial System (UAS) for a specific mission, there are multiple factors to be considered by the operator such as mission, endurance, type of payload and range of the telemetry and control. This research is focusing on extending control range of the UAS by using 4G-LTE network to enable beyond-line-of-sight flying for the commercial UAS. Major UAS such Global Hawk, Predator MQ-1 are able to fly thousands of kilometers by the use of satellite communication. However, the satellite communication annual license subscription can be very expensive. With this situation in mind, a new type of flight controller with 4G-LTE communication has been developed and tested. Throughout the research, blended-wing-body (BWB) Baseline B2S is used as the platform for technology demonstrator. Result from this analysis has proven that the proposed system is capable to control a UAS from as far as United Kingdom, with a latency less than 881 ms in average. The new added capability can potentially give the commercial UAS community a new horizon to be able to control their UAS from anywhere around the world with the availability of 4G-LTE connection


2005 ◽  
Vol 20 (16) ◽  
pp. 3811-3814
Author(s):  
◽  
PAUL LUJAN

A new silicon detector was designed by the CDF collaboration for Run IIb of the Tevatron at Fermilab. The main building block of the new detector is a "supermodule" or "stave", an innovative, compact and lightweight structure of several readout hybrids and sensors with a bus cable running directly underneath the sensors to carry power, data, and control signals to and from the hybrids. The hybrids use a new, radiation-hard readout chip, the SVX4 chip. A number of SVX4 chips, readout hybrids, sensors, and supermodules were produced and tested in preproduction. The performance (including radiation-hardness) and yield of these components met or exceeded all design goals. The detector design goals, solutions, and performance results are presented.


Neurosurgery ◽  
2008 ◽  
Vol 63 (3) ◽  
pp. 487-497 ◽  
Author(s):  
Timothy H. Lucas ◽  
Daniel L. Drane ◽  
Carl B. Dodrill ◽  
George A. Ojemann

ABSTRACT OBJECTIVE The purpose of this investigation was to determine whether clinical speech deficits after brain injury are associated with functional speech reorganization. METHODS Across an 18-year interval, 11 patients with mild-to-moderate speech deficits underwent language mapping as part of their treatment for intractable epilepsy. These “aphasics” were compared with 14 matched “control” patients with normal speech who also were undergoing epilepsy surgery. Neuroanatomic data were compared with quantitative language profiles and clinical variables. RESULTS Cortical lesions were evident near speech areas in all aphasia cases. As expected, aphasic and control patients were distinguished by quantitative language profiles. The groups were further distinguished by the anatomic distribution of their speech sites. A significantly greater proportion of frontal speech sites was found in patients with previous brain injury, consistent with frontal site recruitment. The degree of frontal recruitment varied as a function of patient age at the time of initial brain injury; earlier injuries were associated with greater recruitment. The overall number of speech sites remained the same after injury. Significant associations were found between the number of the speech sites, naming fluency, and the lesion proximity in the temporal lobe. CONCLUSION Language maps in aphasics demonstrated evidence for age-dependent functional recruitment in the frontal, but not temporal, lobe. The proximity of cortical lesions to temporal speech sites predicted the overall extent of temporal lobe speech representation and performance on naming fluency. These findings have implications for neurosurgical planning in patients with preoperative speech deficits.


2010 ◽  
Vol 20-23 ◽  
pp. 1084-1090 ◽  
Author(s):  
Wen Long

Manufacturing Execution System (MES) links plan management and workshop control in an enterprise, which is an integrative management and control system of workshop production oriented to manufacturing process. To overcome the difficulties of traditional software development method, development of MES based on component is adopted to prompt development efficiency and performance of MES, which can be more reconstructing, reuse, expansion and integration, and MES domain analysis driven by ontology is investigated in detail. MES domain analysis driven by ontology is feasible and efficient through developing a pharmaceutics MES which applied in a pharmaceutics manufacturing factory.


Sign in / Sign up

Export Citation Format

Share Document