scholarly journals Towards Scalable and Efficient Architecture for Modeling Trust in IoT Environments

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2986
Author(s):  
Mustafa Ghaleb ◽  
Farag Azzedin

The Internet of Services (IoS) is gaining ground where cloud environments are utilized to create, subscribe, publish, and share services. The fast and significant evolution of IoS is affecting various aspects in people’s life and is enabling a wide spectrum of services and applications ranging from smart e-health, smart homes, to smart surveillance. Building trusted IoT environments is of great importance to achieve the full benefits of IoS. In addition, building trusted IoT environments mitigates unrecoverable and unexpected damages in order to create reliable, efficient, stable, and flexible smart IoS-driven systems. Therefore, ensuring trust will provide the confidence and belief that IoT devices and consequently IoS behave as expected. Before hosting trust models, suitable architecture for Fog computing is needed to provide scalability, fast data access, simple and efficient intra-communication, load balancing, decentralization, and availability. In this article, we propose scalable and efficient Chord-based horizontal architecture. We also show how trust modeling can be mapped to our proposed architecture. Extensive performance evaluation experiments have been conducted to evaluate the performance and the feasibility and also to verify the behavior of our proposed architecture.

Author(s):  
Jaber Almutairi ◽  
Mohammad Aldossary

AbstractRecently, the number of Internet of Things (IoT) devices connected to the Internet has increased dramatically as well as the data produced by these devices. This would require offloading IoT tasks to release heavy computation and storage to the resource-rich nodes such as Edge Computing and Cloud Computing. Although Edge Computing is a promising enabler for latency-sensitive related issues, its deployment produces new challenges. Besides, different service architectures and offloading strategies have a different impact on the service time performance of IoT applications. Therefore, this paper presents a novel approach for task offloading in an Edge-Cloud system in order to minimize the overall service time for latency-sensitive applications. This approach adopts fuzzy logic algorithms, considering application characteristics (e.g., CPU demand, network demand and delay sensitivity) as well as resource utilization and resource heterogeneity. A number of simulation experiments are conducted to evaluate the proposed approach with other related approaches, where it was found to improve the overall service time for latency-sensitive applications and utilize the edge-cloud resources effectively. Also, the results show that different offloading decisions within the Edge-Cloud system can lead to various service time due to the computational resources and communications types.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4679
Author(s):  
Yoon-Su Jeong

As IoT (Internet of Things) devices are diversified in the fields of use (manufacturing, health, medical, energy, home, automobile, transportation, etc.), it is becoming important to analyze and process data sent and received from IoT devices connected to the Internet. Data collected from IoT devices is highly dependent on secure storage in databases located in cloud environments. However, storing directly in a database located in a cloud environment makes it not only difficult to directly control IoT data, but also does not guarantee the integrity of IoT data due to a number of hazards (error and error handling, security attacks, etc.) that can arise from natural disasters and management neglect. In this paper, we propose an optimized hash processing technique that enables hierarchical distributed processing with an n-bit-size blockchain to minimize the loss of data generated from IoT devices deployed in distributed cloud environments. The proposed technique minimizes IoT data integrity errors as well as strengthening the role of intermediate media acting as gateways by interactively authenticating blockchains of n bits into n + 1 and n − 1 layers to normally validate IoT data sent and received from IoT data integrity errors. In particular, the proposed technique ensures the reliability of IoT information by validating hash values of IoT data in the process of storing index information of IoT data distributed in different locations in a blockchain in order to maintain the integrity of the data. Furthermore, the proposed technique ensures the linkage of IoT data by allowing minimal errors in the collected IoT data while simultaneously grouping their linkage information, thus optimizing the load balance after hash processing. In performance evaluation, the proposed technique reduced IoT data processing time by an average of 2.54 times. Blockchain generation time improved on average by 17.3% when linking IoT data. The asymmetric storage efficiency of IoT data according to hash code length is improved by 6.9% on average over existing techniques. Asymmetric storage speed according to the hash code length of the IoT data block was shown to be 10.3% faster on average than existing techniques. Integrity accuracy of IoT data is improved by 18.3% on average over existing techniques.


2018 ◽  
Vol 10 (3) ◽  
pp. 61-83 ◽  
Author(s):  
Deepali Chaudhary ◽  
Kriti Bhushan ◽  
B.B. Gupta

This article describes how cloud computing has emerged as a strong competitor against traditional IT platforms by offering low-cost and “pay-as-you-go” computing potential and on-demand provisioning of services. Governments, as well as organizations, have migrated their entire or most of the IT infrastructure to the cloud. With the emergence of IoT devices and big data, the amount of data forwarded to the cloud has increased to a huge extent. Therefore, the paradigm of cloud computing is no longer sufficient. Furthermore, with the growth of demand for IoT solutions in organizations, it has become essential to process data quickly, substantially and on-site. Hence, Fog computing is introduced to overcome these drawbacks of cloud computing by bringing intelligence to the edge of the network using smart devices. One major security issue related to the cloud is the DDoS attack. This article discusses in detail about the DDoS attack, cloud computing, fog computing, how DDoS affect cloud environment and how fog computing can be used in a cloud environment to solve a variety of problems.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2664 ◽  
Author(s):  
Luis Belem Pacheco ◽  
Eduardo Pelinson Alchieri ◽  
Priscila Mendez Barreto

The use of Internet of Things (IoT) is rapidly growing and a huge amount of data is being generated by IoT devices. Cloud computing is a natural candidate to handle this data since it has enough power and capacity to process, store and control data access. Moreover, this approach brings several benefits to the IoT, such as the aggregation of all IoT data in a common place and the use of cloud services to consume this data and provide useful applications. However, enforcing user privacy when sending sensitive information to the cloud is a challenge. This work presents and evaluates an architecture to provide privacy in the integration of IoT and cloud computing. The proposed architecture, called PROTeCt—Privacy aRquitecture for integratiOn of internet of Things and Cloud computing, improves user privacy by implementing privacy enforcement at the IoT devices instead of at the gateway, as is usually done. Consequently, the proposed approach improves both system security and fault tolerance, since it removes the single point of failure (gateway). The proposed architecture is evaluated through an analytical analysis and simulations with severely constrained devices, where delay and energy consumption are evaluated and compared to other architectures. The obtained results show the practical feasibility of the proposed solutions and demonstrate that the overheads introduced in the IoT devices are worthwhile considering the increased level of privacy and security.


2021 ◽  
Author(s):  
Hamed Hasibi ◽  
Saeed Sedighian Kashi

Fog computing brings cloud capabilities closer to the Internet of Things (IoT) devices. IoT devices generate a tremendous amount of stream data towards the cloud via hierarchical fog nodes. To process data streams, many Stream Processing Engines (SPEs) have been developed. Without the fog layer, the stream query processing executes on the cloud, which forwards much traffic toward the cloud. When a hierarchical fog layer is available, a complex query can be divided into simple queries to run on fog nodes by using distributed stream processing. In this paper, we propose an approach to assign stream queries to fog nodes using container technology. We name this approach Stream Queries Placement in Fog (SQPF). Our goal is to minimize end-to-end delay to achieve a better quality of service. At first, in the emulation step, we make docker container instances from SPEs and evaluate their processing delay and throughput under different resource configurations and queries with varying input rates. Then in the placement step, we assign queries among fog nodes by using a genetic algorithm. The practical approach used in SQPF achieves a near-the-best assignment based on the lowest application deadline in real scenarios, and evaluation results are evidence of this goal.


Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


Author(s):  
Aman Tyagi

Elderly population in the Asian countries is increasing at a very fast rate. Lack of healthcare resources and infrastructure in many countries makes the task of provding proper healthcare difficult. Internet of things (IoT) in healthcare can address the problem effectively. Patient care is possible at home using IoT devices. IoT devices are used to collect different types of data. Various algorithms may be used to analyse data. IoT devices are connected to the internet and all the data of the patients with various health reports are available online and hence security issues arise. IoT sensors, IoT communication technologies, IoT gadgets, components of IoT, IoT layers, cloud and fog computing, benefits of IoT, IoT-based algorithms, IoT security issues, and IoT challenges are discussed in the chapter. Nowadays global epidemic COVID19 has demolished the economy and health services of all the countries worldwide. Usefulness of IoT in COVID19-related issues is explained here.


Author(s):  
Sasikala Chinthakunta ◽  
Shoba Bindu Chigarapalle ◽  
Sudheer Kumar E.

Typically, the analysis of the industrial big data is done at the cloud. If the technology of IIoT is relying on cloud, data from the billions of internet-connected devices are voluminous and demand to be processed within the cloud DCs. Most of the IoT infrastructures—smart driving and car parking systems, smart vehicular traffic management systems, and smart grids—are observed to demand low-latency, real-time services from the service providers. Since cloud includes data storage, processing, and computation only within DCs, huge data traffic generated from the IoT devices probably experience a network bottleneck, high service latency, and poor quality of service (QoS). Hence, the placement of an intermediary node that can perform tasks efficiently and effectively is an unavoidable requirement of IIoT. Fog can be such an intermediary node because of its ability and location to perform tasks at the premise of an industry in a timely manner. This chapter discusses challenges, need, and framework of fog computing, security issues, and solutions of fog computing for IIoT.


Author(s):  
Shanthi Thangam Manukumar ◽  
Vijayalakshmi Muthuswamy

With the development of edge devices and mobile devices, the authenticated fast access for the networks is necessary and important. To make the edge and mobile devices smart, fast, and for the better quality of service (QoS), fog computing is an efficient way. Fog computing is providing the way for resource provisioning, service providers, high response time, and the best solution for mobile network traffic. In this chapter, the proposed method is for handling the fog resource management using efficient offloading mechanism. Offloading is done based on machine learning prediction technology and also by using the KNN algorithm to identify the nearest fog nodes to offload. The proposed method minimizes the energy consumption, latency and improves the QoS for edge devices, IoT devices, and mobile devices.


Sign in / Sign up

Export Citation Format

Share Document