scholarly journals Atmospheric Boundary Layer Wind Profile Estimation Using Neural Networks Applied to Lidar Measurements

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3659
Author(s):  
Adrián García-Gutiérrez ◽  
Diego Domínguez ◽  
Deibi López ◽  
Jesús Gonzalo

This paper introduces a new methodology for estimating the wind profile within the ABL (Atmospheric Boundary Layer) using a neural network and a single-point near-ground measurement. An important advantage of this solution when compared with others available in the literature is that it only requires near surface measurements for the prognosis once the neural network is trained. Another advantage is that it can be used to study the wind profile temporal evolution. This work uses data collected by a lidar sensor located at the Universidad de León (Spain). The neural network best configuration was determined using sensibility analyses. The result is a multilayer perceptron with three layers for each altitude: the input layer has six nodes for the last three measurements, the second has 128 nodes and the third consists of two nodes that provide u and v. The proposed method has better performance than traditional methods. The obtained wind profile information obtained is useful for multiple applications, such as preliminary calculations of the wind resource or CFD models.

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Ali Mamtimin ◽  
Yu Wang ◽  
Hajigul Sayit ◽  
XingHua Yang ◽  
Fan Yang ◽  
...  

As the largest fixed and semifixed desert in China, the Gurbantünggüt Desert has a longperiod of snow in winter and the rapid growth of ephemeral plants in spring, presentingthe obvious seasonal changes in the underlying desert surface type, which could lead to the significantvariety in the near-surface boundary layer over this desert. To clarify the influence of the underlying surface change on the near-surface atmospheric boundary layer, gradient tower data and Eddy covariance data in 2017 were analyzed. The results were as follows: the wind profile can be divided into the nocturnal stable boundary layer and the daytime unstable boundary in spring, summer, and autumn, while the wind profile dominating nighttime stability in winter. During the study period, the four-season temperature profiles can be divided into four types: night radiation type, morning transition type, daylight solar radiation type, and evening transition type, and the temperature difference between spring and summer is more than that of autumn and winter. The vertical temperature lapse rate can reach 4.5°C/100 m in spring and summer, while the vertical temperature lapse rate is 0.5°C/100 m in winter. The special humidity value in summer and spring is greater than autumn and winter. The profile is almost in the inverse humidity state at almost all periods in winter. The inverse humidity phenomenon occurred on the autumn night. Besides, the specific humidity is closely related to the temperature and the near-surface wind speed. The “rapid change” of the underlying surface of the spring desert region affects the surface energy budget, which affects the turbulent energy and the stability of the near-surface layer, thus affecting the changes in temperature, humidity, and wind profile.


1998 ◽  
Vol 37 (3) ◽  
pp. 308-324 ◽  
Author(s):  
Stephen P. Palm ◽  
Denise Hagan ◽  
Geary Schwemmer ◽  
S. H. Melfi

Abstract A new technique for retrieving near-surface moisture and profiles of mixing ratio and potential temperature through the depth of the marine atmospheric boundary layer (MABL) using airborne lidar and multichannel infrared radiometer data is presented. Data gathered during an extended field campaign over the Atlantic Ocean in support of the Lidar In-space Technology Experiment are used to generate 16 moisture and temperature retrievals that are then compared with dropsonde measurements. The technique utilizes lidar-derived statistics on the height of cumulus clouds that frequently cap the MABL to estimate the lifting condensation level. Combining this information with radiometer-derived sea surface temperature measurements, an estimate of the near-surface moisture can be obtained to an accuracy of about 0.8 g kg−1. Lidar-derived statistics on convective plume height and coverage within the MABL are then used to infer the profiles of potential temperature and moisture with a vertical resolution of 20 m. The rms accuracy of derived MABL average moisture and potential temperature is better than 1 g kg−1 and 1°C, respectively. The method relies on the presence of a cumulus-capped MABL, and it was found that the conditions necessary for use of the technique occurred roughly 75% of the time. The synergy of simple aerosol backscatter lidar and infrared radiometer data also shows promise for the retrieval of MABL moisture and temperature from space.


2021 ◽  
Author(s):  
Francisco Albuquerque Neto ◽  
Vinicius Almeida ◽  
Julia Carelli

<p>In recent years, the use of radar wind profilers (RWP) at airports has grown significantly with the aim of supporting decision makers to maintain the safety of aircraft landings and takeoffs.</p><p>The RWP provide vertical profiles of averaged horizontal wind speed and direction and vertical wind velocity for the entire Atmospheric Boundary Layer (ABL) and beyond. In addition, RWP with Radio-Acoustic Sounding System (RASS) are able to retrieve virtual temperature profiles in the ABL.</p><p>RWP data evaluation is usually based on the so-called Doppler Beam Swinging method (DBS) which assumes homogeneity and stationarity of the wind field. Often, transient eddies violate this homogeneity and stationarity requirement. Hence, incorrect wind profiles can relate to transient eddies and present a problem for the forecast of high-impact weather phenomena in airports. This work intends to provide a method for removing outliers in such profiles based on historical data and other variables related to the Atmospheric Boundary Layer stability profile in the study region.</p><p>For this study, a dataset of almost one year retrieved from a RWP LAP3000 with RASS Extension is used for a wind profile correction algorithm development.</p><p>The algorithm consists of the detection of outliers in the wind profiles based on the thermodynamic structure of the ABL and the generation of the corrected profiles.</p><p>Results show that the algorithm is capable of identifying and correcting unrealistic variations in speed caused by transient eddies. The method can be applied as a complement to the RWP data processing for better data reliability.</p><p> </p><p>Keywords: atmospheric boundary layer; stability profile; wind profile</p>


2020 ◽  
Vol 13 (12) ◽  
pp. 6965-6987
Author(s):  
Jae-Sik Min ◽  
Moon-Soo Park ◽  
Jung-Hoon Chae ◽  
Minsoo Kang

Abstract. Accurate boundary layer structure and height are critical in the analysis of the features of air pollutants and local circulation. Although surface-based remote sensing instruments provide a high temporal resolution of the boundary layer structure, there are numerous uncertainties in terms of the accurate determination of the atmospheric boundary layer heights (ABLHs). In this study, an algorithm for an integrated system for ABLH estimation (ISABLE) was developed and applied to the vertical profile data obtained using a ceilometer and a microwave radiometer in Seoul city, Korea. A maximum of 19 ABLHs were estimated via the conventional time-variance, gradient, wavelet, and clustering methods using the backscatter coefficient from the ceilometer. Meanwhile, several stable boundary layer heights were extracted through near-surface inversion and environmental lapse rate methods using the potential temperature from the microwave radiometer. The ISABLE algorithm can find an optimal ABLH from post-processing, such as k-means clustering and density-based spatial clustering of applications with noise (DBSCAN) techniques. It was found that the ABLH determined using ISABLE exhibited more significant correlation coefficients and smaller mean bias and root mean square error between the radiosonde-derived ABLHs than those obtained using the most conventional methods. Clear skies exhibited higher daytime ABLH than cloudy skies, and the daily maximum ABLH was recorded in summer because of the more intense radiation. The ABLHs estimated by ISABLE are expected to contribute to the parameterization of vertical diffusion in the atmospheric boundary layer.


2004 ◽  
Vol 110 (2) ◽  
pp. 281-299 ◽  
Author(s):  
John D. Wilson ◽  
Thomas K. Flesch

2021 ◽  
Author(s):  
Marta Wenta ◽  
Agnieszka Herman

<p>The ongoing development of NWP (Numerical Weather Prediction) models and their increasing horizontal resolution have significantly improved forecasting capabilities. However, in the polar regions models struggle with the representation of near-surface atmospheric properties and the vertical structure of the atmospheric boundary layer (ABL) over sea ice. Particularly difficult to resolve are near-surface temperature, wind speed, and humidity, along with diurnal changes of those properties. Many of the complex processes happening at the interface of sea ice and atmosphere, i.e. vertical fluxes, turbulence, atmosphere - surface coupling are poorly parameterized or not represented in the models at all. Limited data coverage and our poor understanding of the complex processes taking place in the polar ABL limit the development of suitable parametrizations. We try to contribute to the ongoing effort to improve the forecast skill in polar regions through the analysis of unmanned aerial vehicles (UAVs) and automatic weather station (AWS) atmospheric measurements from the coastal area of Bothnia Bay (Wenta et. al., 2021), and the application of those datasets for the analysis of regional NWP models' forecasts. </p><p>Data collected during HAOS (Hailuoto Atmospheric Observations over Sea ice) campaign (Wenta et. al., 2021) is used for the evaluation of regional NWP models results from AROME (Applications of Research to Operations at Mesoscale) - Arctic, HIRLAM (High Resolution Limited Area Model) and WRF (Weather Research and Forecasting). The presented analysis focuses on 27 Feb. 2020 - 2 Mar. 2020, the time of the HAOS campaign, shortly after the formation of new, thin sea ice off the westernmost point of Hailuoto island.  Throughout the studied period weather conditions changed from very cold (-14℃), dry and cloud-free to warmer (~ -5℃), more humid and opaquely cloudy. We evaluate models’ ability to correctly resolve near-surface temperature, humidity, and wind speed, along with vertical changes of temperature and humidity over the sea ice. It is found that generally, models struggle with an accurate representation of surface-based temperature inversions, vertical variations of humidity, and temporal wind speed changes. Furthermore, a WRF Single Columng Model (SCM) is launched to study whether specific WRF planetary boundary layer parameterizations (MYJ, YSU, MYNN, QNSE), vertical resolution, and more accurate representation of surface conditions increase the WRF model’s ability to resolve the ABL above sea ice in the Bay of Bothnia. Experiments with WRF SCM are also used to determine the possible reasons behind model’s biases. Preliminary results show that accurate representation of sea ice conditions, including thickness, surface temperature, albedo, and snow coverage is crucial for increasing the quality of NWP models forecasts. We emphasize the importance of further development of parametrizations focusing on the processes at the sea ice-atmosphere interface.</p><p> </p><p>Reference:</p><p>Wenta, M., Brus, D., Doulgeris, K., Vakkari, V., and Herman, A.: Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bay of Bothnia (Baltic Sea), Earth Syst. Sci. Data, 13, 33–42, https://doi.org/10.5194/essd-13-33-2021, 2021. </p><p><br><br><br><br><br><br></p>


2019 ◽  
Vol 145 (720) ◽  
pp. 982-992 ◽  
Author(s):  
Mark Kelly ◽  
Roberto Alessio Cersosimo ◽  
Jacob Berg

2013 ◽  
Vol 332 ◽  
pp. 443-448 ◽  
Author(s):  
Crina Radu ◽  
Ion Cristea ◽  
Eugen Herghelegiu ◽  
Stefan Tabacu

The aim of this paper is to enrich the knowledge related to the single point incremental forming (SPIF) process by evaluating the efficiency of two optimization methods - the response surface method and the neural network method - to improve the accuracy of manufactured parts by prescribing a proper combination of the process parameters. The analysis is performed for a double frustum of pyramid made by stainless steel. It was found a good ability of prediction of both methods, demonstrating their suitability for physical implementation in solving problems associated to the SPIF process.


Sign in / Sign up

Export Citation Format

Share Document