scholarly journals Particle Swarm Optimization and Multiple Stacked Generalizations to Detect Nitrogen and Organic-Matter in Organic-Fertilizer Using Vis-NIR

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4882
Author(s):  
Mahamed Lamine Guindo ◽  
Muhammad Hilal Kabir ◽  
Rongqin Chen ◽  
Fei Liu

Organic fertilizer is a key component of agricultural sustainability and significantly contributes to the improvement of soil fertility. The values of nutrients such as organic matter and nitrogen in organic fertilizers positively affect plant growth and cause environmental problems when used in large amounts. Hence the importance of implementing fast detection of nitrogen (N) and organic matter (OM). This paper examines the feasibility of a framework that combined a particle swarm optimization (PSO) and two multiple stacked generalizations to determine the amount of nitrogen and organic matter in organic-fertilizer using visible near-infrared spectroscopy (Vis-NIR). The first multiple stacked generalizations for classification coupled with PSO (FSGC-PSO) were for feature selection purposes, while the second stacked generalizations for regression (SSGR) improved the detection of nitrogen and organic matter. The computation of root means square error (RMSE) and the coefficient of determination for calibration and prediction set (R2) was used to gauge the different models. The obtained FSGC-PSO subset combined with SSGR achieved significantly better prediction results than conventional methods such as Ridge, support vector machine (SVM), and partial least square (PLS) for both nitrogen (R2p = 0.9989, root mean square error of prediction (RMSEP) = 0.031 and limit of detection (LOD) = 2.97) and organic matter (R2p = 0.9972, RMSEP = 0.051 and LOD = 2.97). Therefore, our settled approach can be implemented as a promising way to monitor and evaluate the amount of N and OM in organic fertilizer.

2014 ◽  
Vol 511-512 ◽  
pp. 927-930
Author(s):  
Shuai Zhang ◽  
Hai Rui Wang ◽  
Jin Huang ◽  
He Liu

In the paper, the forecast problems of wind speed are considered. In order to enhance the redaction accuracy of the wind speed, this article is about a research on particle swarm optimization least square support vector machine for short-term wind speed prediction (PSO-LS-SVM). Firstly, the prediction models are built by using least square support vector machine based on particle swarm optimization, this model is used to predict the wind speed next 48 hours. In order to further improve the prediction accuracy, on this basis, introduction of the offset optimization method. Finally large amount of experiments and measurement data comparison compensation verify the effectiveness and feasibility of the research on particle swarm optimization least square support vector machine for short-term wind speed prediction, Thereby reducing the short-term wind speed prediction error, very broad application prospects.


2020 ◽  
pp. 147592172094563
Author(s):  
Yang Li ◽  
Feiyun Xu

Laser cladding technology has become a central issue in industrial research and application recently. Due to the complexity of the processing and the difficulty of quantitative analysis, it is particularly important to effectively and reliably detect the forming quality of the cladding layer. Therefore, the laser cladding processing condition of metallic panels is monitored and identified based on acoustic emission technology in this article. Consequently, laser cladding acoustic emission signal of 316L stainless steel plate is first collected, and a multi-domain acoustic emission signal feature extraction method based on time–frequency domain and waveform parameters is constructed by integrating time–frequency, empirical, and inter-relationship diagraph analysis. Moreover, a feature optimization approach based on t-distributed stochastic neighbor embedding algorithm is proposed, which combines with correlation analysis to realize the de-redundancy and optimization of acoustic emission signal features. In addition, on the basis of optimizing the characteristics of acoustic emission signal, laser cladding acoustic emission signals under three technological parameters are collected. Second, a laser cladding condition identification method, which is a least square support vector machine algorithm based on niche particle swarm optimization, is proposed. The optimal parameter combination of niche particle swarm optimization algorithm is mainly selected to improve the accuracy of identification and classification. The results demonstrate the proposed t-distributed stochastic neighbor embedding feature optimization method can effectively extract the sensitive information related to the processing condition in the feature space, and the optimization of least square support vector machine parameters through niche particle swarm optimization can significantly improve the identification rate of classification. Specifically, the feasibility of the proposed t-distributed stochastic neighbor embedding–niche particle swarm optimization–least square support vector machine model to analyze laser cladding acoustic emission signal characteristics is verified, and the effectiveness of acoustic emission–based structural condition monitoring and identification of laser cladding plate-like structures is also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document