scholarly journals Optimal Bands Combination Selection for Extracting Garlic Planting Area with Multi-Temporal Sentinel-2 Imagery

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5556
Author(s):  
Shuang Wu ◽  
Han Lu ◽  
Hongliang Guan ◽  
Yong Chen ◽  
Danyu Qiao ◽  
...  

Garlic is one of the main economic crops in China. Accurate and timely extraction of the garlic planting area is critical for adjusting the agricultural planting structure and implementing rural policy actions. Crop extraction methods based on remote sensing usually use spectral–temporal features. Still, for garlic extraction, most methods simply combine all multi-temporal images. There has been a lack of research on each band’s function in each multi-temporal image and optimal bands combination. To systematically explore the potential of the multi-temporal method for garlic extraction, we obtained a series of Sentinel-2 images in the whole garlic growth cycle. The importance of each band in all these images was ranked by the random forest (RF) method. According to the importance score of each band, eight different multi-temporal combination schemes were designed. The RF classifier was employed to extract garlic planting area, and the accuracy of the eight schemes was compared. The results show that (1) the Scheme VI (the top 39 bands in importance score) achieved the best accuracy of 98.65%, which is 6% higher than the optimal mono-temporal (February, wintering period) result, and (2) the red-edge band and the shortwave-infrared band played an essential role in accurate garlic extraction. This study gives inspiration in selecting the remotely sensed data source, the band, and phenology for accurately extracting garlic planting area, which could be transferred to other sites with larger areas and similar agriculture structures.

2019 ◽  
Vol 11 (18) ◽  
pp. 2156 ◽  
Author(s):  
Dezhi Wang ◽  
Bo Wan ◽  
Penghua Qiu ◽  
Zejun Zuo ◽  
Run Wang ◽  
...  

Hainan Island is the second-largest island in China and has the most species-diverse mangrove forests in the country. To date, the height and aboveground ground biomass (AGB) of the mangrove forests on Hainan Island are unknown, partly as a result of the challenges faced during extensive field sampling in mangrove habitats (intertidal mudflats inundated by periodic seawater). Therefore, this study used a low-cost UAV-LiDAR (light detection and ranging sensor mounted on an unmanned aerial vehicle) system as a sampling tool and Sentinel-2 imagery as auxiliary data to estimate and map the mangrove height and AGB on Hainan Island. Hainan Island has 3697.02 hectares of mangrove forests with an average patch area of approximately 1 ha. The results show that the mangroves on whole Hainan Island have an average height of 6.99 m, a total AGB of 474,199.31 Mg and an AGB density of 128.27 Mg ha−1. The AGB hot spots are located in Qinglan Harbor and the south of Dongzhai Harbor. The proposed height model LiDAR-S2 performed well with an R2 of 0.67 and an RMSE (root mean square error) of 1.90 m; the proposed AGB model G~LiDAR~S2 performed better (an R2 of 0.62 and an RMSE of 50.36 Mg ha−1) than the traditional AGB model G~S2 that directly related ground plots and Sentinel-2 data. The results also indicate that the LiDAR metrics describing the canopy’s thickness and its top and bottom characteristics are the most important variables for mangrove AGB estimation. For the Sentinel-2 indices, the red-edge and shortwave infrared features, especially the red-edge 1 and shortwave infrared Band 11 features, play the most important roles in estimating mangrove AGB and height. In conclusion, this paper presents the first mangrove height and AGB maps of Hainan Island and demonstrates the feasibility of using UAV-LiDAR as a sampling tool for mangrove forests.


2020 ◽  
Vol 12 (24) ◽  
pp. 4052
Author(s):  
Zhiwei Yi ◽  
Li Jia ◽  
Qiting Chen

Timely and accurate crop classification is of enormous significance for agriculture management. The Shiyang River Basin, an inland river basin, is one of the most prominent water resource shortage regions with intensive agriculture activities in northwestern China. However, a free crop map with high spatial resolution is not available in the Shiyang River Basin. The European Space Agency (ESA) satellite Sentinel-2 has multi-spectral bands ranging in the visible-red edge-near infrared-shortwave infrared (VIS-RE-NIR-SWIR) spectrum. Understanding the impact of spectral-temporal information on crop classification is helpful for users to select optimized spectral bands combinations and temporal window in crop mapping when using Sentinel-2 data. In this study, multi-temporal Sentinel-2 data acquired in the growing season in 2019 were applied to the random forest algorithm to generate the crop classification map at 10 m spatial resolution for the Shiyang River Basin. Four experiments with different combinations of feature sets were carried out to explore which Sentinel-2 information was more effective for higher crop classification accuracy. The results showed that the augment of multi-spectral and multi-temporal information of Sentinel-2 improved the accuracy of crop classification remarkably, and the improvement was firmly related to strategies of feature selections. Compared with other bands, red-edge band 1 (RE-1) and shortwave-infrared band 1 (SWIR-1) of Sentinel-2 showed a higher competence in crop classification. The combined application of images in the early, middle and late crop growth stage is significant for achieving optimal performance. A relatively accurate classification (overall accuracy = 0.94) was obtained by utilizing the pivotal spectral bands and dates of image. In addition, a crop map with a satisfied accuracy (overall accuracy > 0.9) could be generated as early as late July. This study gave an inspiration in selecting targeted spectral bands and period of images for acquiring more accurate and timelier crop map. The proposed method could be transferred to other arid areas with similar agriculture structure and crop phenology.


2020 ◽  
Vol 12 (9) ◽  
pp. 1367 ◽  
Author(s):  
Huong Thi Thanh Nguyen ◽  
Trung Minh Doan ◽  
Erkki Tomppo ◽  
Ronald E. McRoberts

Information on land use and land cover (LULC) including forest cover is important for the development of strategies for land planning and management. Satellite remotely sensed data of varying resolutions have been an unmatched source of such information that can be used to produce estimates with a greater degree of confidence than traditional inventory estimates. However, use of these data has always been a challenge in tropical regions owing to the complexity of the biophysical environment, clouds, and haze, and atmospheric moisture content, all of which impede accurate LULC classification. We tested a parametric classifier (logistic regression) and three non-parametric machine learning classifiers (improved k-nearest neighbors, random forests, and support vector machine) for classification of multi-temporal Sentinel 2 satellite imagery into LULC categories in Dak Nong province, Vietnam. A total of 446 images, 235 from the year 2017 and 211 from the year 2018, were pre-processed to gain high quality images for mapping LULC in the 6516 km2 study area. The Sentinel 2 images were tested and classified separately for four temporal periods: (i) dry season, (ii) rainy season, (iii) the entirety of the year 2017, and (iv) the combination of dry and rainy seasons. Eleven different LULC classes were discriminated of which five were forest classes. For each combination of temporal image set and classifier, a confusion matrix was constructed using independent reference data and pixel classifications, and the area on the ground of each class was estimated. For overall temporal periods and classifiers, overall accuracy ranged from 63.9% to 80.3%, and the Kappa coefficient ranged from 0.611 to 0.813. Area estimates for individual classes ranged from 70 km2 (1% of the study area) to 2200 km2 (34% of the study area) with greater uncertainties for smaller classes.


Author(s):  
W. Jiang ◽  
Y. Ni ◽  
Z. Pang ◽  
G. He ◽  
J. Fu ◽  
...  

Abstract. Water body plays an irreplaceable role in the global ecosystem and climate system. Sentinel-2 is a new satellite data with higher spatial and spectral resolution. Through analysing spectral characteristics of Sentinel-2 satellite imagery, the brightness of water body in vegetation red edge band and shortwave infrared band showe sharply different than that of the not water body. Therefore, a new type of water index SWI (Sentinel-2 Water Index) was proposed by combing those two bands. Four representative water types, which included Taihu Lake, the Yangtze River Estuary, the ChaKa Salt Lake and the Chain Lake, were selected as experimental areas. Normalized difference water index (NDWI) and Sentinel-2 Water Index (SWI) with Otsu method were employed to extract water body. The results showed that overall accuracy and Kappa coefficient of SWI were higher than that of NDWI and SWI was efficient index to rapidly and accurately extract water for Sentinel-2 data. Therefore, SWI had application potential for larger scale water mapping in the future.


2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3982
Author(s):  
Giacomo Lazzeri ◽  
William Frodella ◽  
Guglielmo Rossi ◽  
Sandro Moretti

Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth.


2021 ◽  
Vol 13 (15) ◽  
pp. 2983
Author(s):  
Alberto López-Amoedo ◽  
Xana Álvarez ◽  
Henrique Lorenzo ◽  
Juan Luis Rodríguez

Land fragmentation and small plots are the main features of the rural environment of Galicia (NW Spain). Smallholding limits land use management, representing a drawback in local forest planning. This study analyzes the potential use of multitemporal Sentinel-2 images to detect and control forest cuts in very small pine and eucalyptus plots located in southern Galicia. The proposed approach is based on the analysis of Sentinel-2 NDVI time series in 4231 plots smaller than 3 ha (average 0.46 ha). The methodology allowed us to detect cuts, allocate cut dates and quantify plot areas due to different cutting cycles in an uneven-aged stand. An accuracy of approximately 95% was achieved when the whole plot was cut, with an 81% accuracy for partial cuts. The main difficulty in detecting and dating cuts was related to cloud cover, which affected the multitemporal analysis. In conclusion, the proposed methodology provides an accurate estimation of cutting date and area, helping to improve the monitoring system in sustainable forest certifications to ensure compliance with forest management plans.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Manab Kumar Das ◽  
Samit Ari

Classification of electrocardiogram (ECG) signals plays an important role in clinical diagnosis of heart disease. This paper proposes the design of an efficient system for classification of the normal beat (N), ventricular ectopic beat (V), supraventricular ectopic beat (S), fusion beat (F), and unknown beat (Q) using a mixture of features. In this paper, two different feature extraction methods are proposed for classification of ECG beats: (i) S-transform based features along with temporal features and (ii) mixture of ST and WT based features along with temporal features. The extracted feature set is independently classified using multilayer perceptron neural network (MLPNN). The performances are evaluated on several normal and abnormal ECG signals from 44 recordings of the MIT-BIH arrhythmia database. In this work, the performances of three feature extraction techniques with MLP-NN classifier are compared using five classes of ECG beat recommended by AAMI (Association for the Advancement of Medical Instrumentation) standards. The average sensitivity performances of the proposed feature extraction technique for N, S, F, V, and Q are 95.70%, 78.05%, 49.60%, 89.68%, and 33.89%, respectively. The experimental results demonstrate that the proposed feature extraction techniques show better performances compared to other existing features extraction techniques.


Sign in / Sign up

Export Citation Format

Share Document