scholarly journals Gait Phase Estimation by Using LSTM in IMU-Based Gait Analysis—Proof of Concept

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5749
Author(s):  
Mustafa Sarshar ◽  
Sasanka Polturi ◽  
Lutz Schega

Gait phase detection in IMU-based gait analysis has some limitations due to walking style variations and physical impairments of individuals. Therefore, available algorithms may not work properly when the gait data is noisy, or the person rarely reaches a steady state of walking. The aim of this work was to employ Artificial Intelligence (AI), specifically a long short-term memory (LSTM) algorithm, to overcome these weaknesses. Three supervised LSTM-based models were designed to estimate the expected gait phases, including foot-off (FO), mid-swing (MidS) and foot-contact (FC). For collecting gait data two tri-axial inertial sensors were located above each ankle. The angular velocity magnitude, rotation matrix magnitude and free acceleration magnitude were captured for data labeling and turning detection and to strengthen the model, respectively. To do so, a train dataset based on a novel movement protocol was acquired. A validation dataset similar to a train dataset was generated as well. Five test datasets from already existing data were also created to independently evaluate the models. After testing the models on validation and test datasets, all three models demonstrated promising performance in estimating desired gait phases. The proposed approach proves the possibility of employing AI-based algorithms to predict labeled gait phases from a time series of gait data.

2020 ◽  
Vol 10 (19) ◽  
pp. 6755
Author(s):  
Carlos Iturrino Garcia ◽  
Francesco Grasso ◽  
Antonio Luchetta ◽  
Maria Cristina Piccirilli ◽  
Libero Paolucci ◽  
...  

The use of electronic loads has improved many aspects of everyday life, permitting more efficient, precise and automated process. As a drawback, the nonlinear behavior of these systems entails the injection of electrical disturbances on the power grid that can cause distortion of voltage and current. In order to adopt countermeasures, it is important to detect and classify these disturbances. To do this, several Machine Learning Algorithms are currently exploited. Among them, for the present work, the Long Short Term Memory (LSTM), the Convolutional Neural Networks (CNN), the Convolutional Neural Networks Long Short Term Memory (CNN-LSTM) and the CNN-LSTM with adjusted hyperparameters are compared. As a preliminary stage of the research, the voltage and current time signals are simulated using MATLAB Simulink. Thanks to the simulation results, it is possible to acquire a current and voltage dataset with which the identification algorithms are trained, validated and tested. These datasets include simulations of several disturbances such as Sag, Swell, Harmonics, Transient, Notch and Interruption. Data Augmentation techniques are used in order to increase the variability of the training and validation dataset in order to obtain a generalized result. After that, the networks are fed with an experimental dataset of voltage and current field measurements containing the disturbances mentioned above. The networks have been compared, resulting in a 79.14% correct classification rate with the LSTM network versus a 84.58% for the CNN, 84.76% for the CNN-LSTM and a 83.66% for the CNN-LSTM with adjusted hyperparameters. All of these networks are tested using real measurements.


2020 ◽  
Vol 9 (1) ◽  
pp. 238-246
Author(s):  
Gan Wei Nie ◽  
Nurul Fathiah Ghazali ◽  
Norazman Shahar ◽  
Muhammad Amir As'ari

This paper proposes a stair walking detection via Long-short Term Memory (LSTM) network to prevent stair fall event happen by alerting caregiver for assistance as soon as possible. The tri-axial accelerometer and gyroscope data of five activities of daily living (ADLs) including stair walking is collected from 20 subjects with wearable inertial sensors on the left heel, right heel, chest, left wrist and right wrist. Several parameters which are window size, sensor deployment, number of hidden cell unit and LSTM architecture were varied in finding an optimized LSTM model for stair walking detection. As the result, the best model in detecting stair walking event that achieve 95.6% testing accuracy is double layered LSTM with 250 hidden cell units that is fed with data from all sensor locations with window size of 2 seconds. The result also shows that with similar detection model but fed with single sensor data, the model can achieve very good performance which is above 83.2%. It should be possible, therefore, to integrate the proposed detection model for fall prevention especially among patients or elderly in helping to alert the caregiver when stair walking event occur.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Sumaiya Tarannum Noor ◽  
Syeda Tasmiah Asad ◽  
Mohammad Monirujjaman Khan ◽  
Gurjot Singh Gaba ◽  
Jehad F. Al-Amri ◽  
...  

This paper presents a model to predict the risk of depression based on electrocardiogram (ECG). This proposed model uses a Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) autoencoder to predict normal, abnormal, and PVC heartbeats. The RNN model is a deep learning-based model to classify normal, abnormal, and PVC heartbeats. We used the model as a classifier. The model uses a heart rates dataset to predict abnormal and PVC heartbeats. As for the dataset, we have used 5000 ECG samples. The model was trained on a training dataset and validation dataset. After that, it was tested on a test dataset. The model is trained on normal heartbeat rates, so the model can predict any heartbeat rates other than normal. Our contribution here is to build a model that can differentiate between “normal,” “abnormal,” and “risky” heartbeats. Our model predicts “normal” heartbeats with 97.24% accuracy and can predict “PVC” heartbeats with 100% accuracy. Other than the accuracy, we evaluated our model on the training loss graphs. These two types of training loss graphs were evaluated as “normal” versus “risky” and “abnormal” versus “risky.” We have seen great results there as well. The best losses for “normal,” “abnormal,” and “risky” are 5.71, 33.36, and 34.78. However, these results may improve if a larger dataset is used. In studies, it was found that patients suffering from depression may have a different kind of heartbeat than the normal ones. In most cases, it is PVC (Premature Ventricular Contraction) heartbeats. Therefore, the target is to predict abnormal heartbeats and PVC heartbeats.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


2020 ◽  
Author(s):  
Abdolreza Nazemi ◽  
Johannes Jakubik ◽  
Andreas Geyer-Schulz ◽  
Frank J. Fabozzi

Sign in / Sign up

Export Citation Format

Share Document