scholarly journals Predicting the Risk of Depression Based on ECG Using RNN

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Sumaiya Tarannum Noor ◽  
Syeda Tasmiah Asad ◽  
Mohammad Monirujjaman Khan ◽  
Gurjot Singh Gaba ◽  
Jehad F. Al-Amri ◽  
...  

This paper presents a model to predict the risk of depression based on electrocardiogram (ECG). This proposed model uses a Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) autoencoder to predict normal, abnormal, and PVC heartbeats. The RNN model is a deep learning-based model to classify normal, abnormal, and PVC heartbeats. We used the model as a classifier. The model uses a heart rates dataset to predict abnormal and PVC heartbeats. As for the dataset, we have used 5000 ECG samples. The model was trained on a training dataset and validation dataset. After that, it was tested on a test dataset. The model is trained on normal heartbeat rates, so the model can predict any heartbeat rates other than normal. Our contribution here is to build a model that can differentiate between “normal,” “abnormal,” and “risky” heartbeats. Our model predicts “normal” heartbeats with 97.24% accuracy and can predict “PVC” heartbeats with 100% accuracy. Other than the accuracy, we evaluated our model on the training loss graphs. These two types of training loss graphs were evaluated as “normal” versus “risky” and “abnormal” versus “risky.” We have seen great results there as well. The best losses for “normal,” “abnormal,” and “risky” are 5.71, 33.36, and 34.78. However, these results may improve if a larger dataset is used. In studies, it was found that patients suffering from depression may have a different kind of heartbeat than the normal ones. In most cases, it is PVC (Premature Ventricular Contraction) heartbeats. Therefore, the target is to predict abnormal heartbeats and PVC heartbeats.

Author(s):  
Azim Heydari ◽  
Meysam Majidi Nezhad ◽  
Davide Astiaso Garcia ◽  
Farshid Keynia ◽  
Livio De Santoli

AbstractAir pollution monitoring is constantly increasing, giving more and more attention to its consequences on human health. Since Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are the major pollutants, various models have been developed on predicting their potential damages. Nevertheless, providing precise predictions is almost impossible. In this study, a new hybrid intelligent model based on long short-term memory (LSTM) and multi-verse optimization algorithm (MVO) has been developed to predict and analysis the air pollution obtained from Combined Cycle Power Plants. In the proposed model, long short-term memory model is a forecaster engine to predict the amount of produced NO2 and SO2 by the Combined Cycle Power Plant, where the MVO algorithm is used to optimize the LSTM parameters in order to achieve a lower forecasting error. In addition, in order to evaluate the proposed model performance, the model has been applied using real data from a Combined Cycle Power Plant in Kerman, Iran. The datasets include wind speed, air temperature, NO2, and SO2 for five months (May–September 2019) with a time step of 3-h. In addition, the model has been tested based on two different types of input parameters: type (1) includes wind speed, air temperature, and different lagged values of the output variables (NO2 and SO2); type (2) includes just lagged values of the output variables (NO2 and SO2). The obtained results show that the proposed model has higher accuracy than other combined forecasting benchmark models (ENN-PSO, ENN-MVO, and LSTM-PSO) considering different network input variables. Graphic abstract


2021 ◽  
pp. 1-17
Author(s):  
Enda Du ◽  
Yuetian Liu ◽  
Ziyan Cheng ◽  
Liang Xue ◽  
Jing Ma ◽  
...  

Summary Accurate production forecasting is an essential task and accompanies the entire process of reservoir development. With the limitation of prediction principles and processes, the traditional approaches are difficult to make rapid predictions. With the development of artificial intelligence, the data-driven model provides an alternative approach for production forecasting. To fully take the impact of interwell interference on production into account, this paper proposes a deep learning-based hybrid model (GCN-LSTM), where graph convolutional network (GCN) is used to capture complicated spatial patterns between each well, and long short-term memory (LSTM) neural network is adopted to extract intricate temporal correlations from historical production data. To implement the proposed model more efficiently, two data preprocessing procedures are performed: Outliers in the data set are removed by using a box plot visualization, and measurement noise is reduced by a wavelet transform. The robustness and applicability of the proposed model are evaluated in two scenarios of different data types with the root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE). The results show that the proposed model can effectively capture spatial and temporal correlations to make a rapid and accurate oil production forecast.


Author(s):  
Preethi D. ◽  
Neelu Khare

This chapter presents an ensemble-based feature selection with long short-term memory (LSTM) model. A deep recurrent learning model is proposed for classifying network intrusion. This model uses ensemble-based feature selection (EFS) for selecting the appropriate features from the dataset and long short-term memory for the classification of network intrusions. The EFS combines five feature selection techniques, namely information gain, gain ratio, chi-square, correlation-based feature selection, and symmetric uncertainty-based feature selection. The experiments were conducted using the standard benchmark NSL-KDD dataset and implemented using tensor flow and python. The proposed model is evaluated using the classification performance metrics and also compared with all the 41 features without any feature selection as well as with each individual feature selection technique and classified using LSTM. The performance study showed that the proposed model performs better, with 99.8% accuracy, with a higher detection and lower false alarm rates.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 4017 ◽  
Author(s):  
Dukhwan Yu ◽  
Wonik Choi ◽  
Myoungsoo Kim ◽  
Ling Liu

The problem of Photovoltaic (PV) power generation forecasting is becoming crucial as the penetration level of Distributed Energy Resources (DERs) increases in microgrids and Virtual Power Plants (VPPs). In order to improve the stability of power systems, a fair amount of research has been proposed for increasing prediction performance in practical environments through statistical, machine learning, deep learning, and hybrid approaches. Despite these efforts, the problem of forecasting PV power generation remains to be challenging in power system operations since existing methods show limited accuracy and thus are not sufficiently practical enough to be widely deployed. Many existing methods using long historical data suffer from the long-term dependency problem and are not able to produce high prediction accuracy due to their failure to fully utilize all features of long sequence inputs. To address this problem, we propose a deep learning-based PV power generation forecasting model called Convolutional Self-Attention based Long Short-Term Memory (LSTM). By using the convolutional self-attention mechanism, we can significantly improve prediction accuracy by capturing the local context of the data and generating keys and queries that fit the local context. To validate the applicability of the proposed model, we conduct extensive experiments on both PV power generation forecasting using a real world dataset and power consumption forecasting. The experimental results of power generation forecasting using the real world datasets show that the MAPEs of the proposed model are much lower, in fact by 7.7%, 6%, 3.9% compared to the Deep Neural Network (DNN), LSTM and LSTM with the canonical self-attention, respectively. As for power consumption forecasting, the proposed model exhibits 32%, 17% and 44% lower Mean Absolute Percentage Error (MAPE) than the DNN, LSTM and LSTM with the canonical self-attention, respectively.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 861 ◽  
Author(s):  
Xiangdong Ran ◽  
Zhiguang Shan ◽  
Yufei Fang ◽  
Chuang Lin

Traffic prediction is based on modeling the complex non-linear spatiotemporal traffic dynamics in road network. In recent years, Long Short-Term Memory has been applied to traffic prediction, achieving better performance. The existing Long Short-Term Memory methods for traffic prediction have two drawbacks: they do not use the departure time through the links for traffic prediction, and the way of modeling long-term dependence in time series is not direct in terms of traffic prediction. Attention mechanism is implemented by constructing a neural network according to its task and has recently demonstrated success in a wide range of tasks. In this paper, we propose an Long Short-Term Memory-based method with attention mechanism for travel time prediction. We present the proposed model in a tree structure. The proposed model substitutes a tree structure with attention mechanism for the unfold way of standard Long Short-Term Memory to construct the depth of Long Short-Term Memory and modeling long-term dependence. The attention mechanism is over the output layer of each Long Short-Term Memory unit. The departure time is used as the aspect of the attention mechanism and the attention mechanism integrates departure time into the proposed model. We use AdaGrad method for training the proposed model. Based on the datasets provided by Highways England, the experimental results show that the proposed model can achieve better accuracy than the Long Short-Term Memory and other baseline methods. The case study suggests that the departure time is effectively employed by using attention mechanism.


Author(s):  
Tao Gui ◽  
Qi Zhang ◽  
Lujun Zhao ◽  
Yaosong Lin ◽  
Minlong Peng ◽  
...  

In recent years, long short-term memory (LSTM) has been successfully used to model sequential data of variable length. However, LSTM can still experience difficulty in capturing long-term dependencies. In this work, we tried to alleviate this problem by introducing a dynamic skip connection, which can learn to directly connect two dependent words. Since there is no dependency information in the training data, we propose a novel reinforcement learning-based method to model the dependency relationship and connect dependent words. The proposed model computes the recurrent transition functions based on the skip connections, which provides a dynamic skipping advantage over RNNs that always tackle entire sentences sequentially. Our experimental results on three natural language processing tasks demonstrate that the proposed method can achieve better performance than existing methods. In the number prediction experiment, the proposed model outperformed LSTM with respect to accuracy by nearly 20%.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5873
Author(s):  
Yuhong Xie ◽  
Yuzuru Ueda ◽  
Masakazu Sugiyama

Load forecasting is an essential task in the operation management of a power system. Electric power companies utilize short-term load forecasting (STLF) technology to make reasonable power generation plans. A forecasting model with low prediction errors helps reduce operating costs and risks for the operators. In recent years, machine learning has become one of the most popular technologies for load forecasting. In this paper, a two-stage STLF model based on long short-term memory (LSTM) and multilayer perceptron (MLP), which improves the forecasting accuracy over the entire time horizon, is proposed. In the first stage, a sequence-to-sequence (seq2seq) architecture, which can handle a multi-sequence of input to extract more features of historical data than that of single sequence, is used to make multistep predictions. In the second stage, the MLP is used for residual modification by perceiving other information that the LSTM cannot. To construct the model, we collected the electrical load, calendar, and meteorological records of Kanto region in Japan for four years. Unlike other LSTM-based hybrid architectures, the proposed model uses two independent neural networks instead of making the neural network deeper by concatenating a series of LSTM cells and convolutional neural networks (CNNs). Therefore, the proposed model is easy to be trained and more interpretable. The seq2seq module performs well in the first few hours of the predictions. The MLP inherits the advantage of the seq2seq module and improves the results by feeding artificially selected features both from historical data and information of the target day. Compared to the LSTM-AM model and single MLP model, the mean absolute percentage error (MAPE) of the proposed model decreases from 2.82% and 2.65% to 2%, respectively. The results demonstrate that the MLP helps improve the prediction accuracy of seq2seq module and the proposed model achieves better performance than other popular models. In addition, this paper also reveals the reason why the MLP achieves the improvement.


Crude oil is leading globally, as it represents roughly about 33% of the total energy consumed globally. It is one of the most significant exchanged resources in the world, oil in one way or the other affects our day to day routines, like transportation, cooking and power, and other numerous petrochemical items going from the things we use to the things we wear. The increment sought after for petroleum derivatives is on a persistent ascent, making it vital for the oil and gas industry to think of new methodologies for further developing activity. This paper presents a smart system for detecting anomalies in crude oil prices. The experimental process of the proposed system is of two phases. The first phase has to do with the pre-processing stage, and the training stage while the second phase of the experiment has to do with the building/training of the Long Short-Term Memory algorithm. The experimental result shows that LSTM model had an accuracy result of 98%. The result further shows that our proposed model is under fitting since the training loss is lesser than the validation loss. The proposed model was saved and was used in detecting anomalies of the crude oil prices ranging from 1990 to 2020.


2020 ◽  
Vol 10 (19) ◽  
pp. 6755
Author(s):  
Carlos Iturrino Garcia ◽  
Francesco Grasso ◽  
Antonio Luchetta ◽  
Maria Cristina Piccirilli ◽  
Libero Paolucci ◽  
...  

The use of electronic loads has improved many aspects of everyday life, permitting more efficient, precise and automated process. As a drawback, the nonlinear behavior of these systems entails the injection of electrical disturbances on the power grid that can cause distortion of voltage and current. In order to adopt countermeasures, it is important to detect and classify these disturbances. To do this, several Machine Learning Algorithms are currently exploited. Among them, for the present work, the Long Short Term Memory (LSTM), the Convolutional Neural Networks (CNN), the Convolutional Neural Networks Long Short Term Memory (CNN-LSTM) and the CNN-LSTM with adjusted hyperparameters are compared. As a preliminary stage of the research, the voltage and current time signals are simulated using MATLAB Simulink. Thanks to the simulation results, it is possible to acquire a current and voltage dataset with which the identification algorithms are trained, validated and tested. These datasets include simulations of several disturbances such as Sag, Swell, Harmonics, Transient, Notch and Interruption. Data Augmentation techniques are used in order to increase the variability of the training and validation dataset in order to obtain a generalized result. After that, the networks are fed with an experimental dataset of voltage and current field measurements containing the disturbances mentioned above. The networks have been compared, resulting in a 79.14% correct classification rate with the LSTM network versus a 84.58% for the CNN, 84.76% for the CNN-LSTM and a 83.66% for the CNN-LSTM with adjusted hyperparameters. All of these networks are tested using real measurements.


Sign in / Sign up

Export Citation Format

Share Document