scholarly journals Modular Software Architecture for Local Smart Building Servers

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5810
Author(s):  
Lamine Lagsaiar ◽  
Isam Shahrour ◽  
Ammar Aljer ◽  
Aziz Soulhi

This paper presented the architecture and construction of a novel smart building system that could monitor and control buildings’ use in a safe and optimal way. The system operates on a Raspberry local server, which could be connected via the cloud technology to a central platform. The local system includes nine modules that inter-communicate. The system detects sensor faults, and provides a friendly interface to occupants. The paper presented the software architecture IoT used for the building monitoring and the use of this system for the management of fifteen social housing units during a year. The system allowed the investigation of indoor comfort and both energy and hot water consumptions. Data analysis resulted in the detection of abnormal energy consumptions. The system could be easily used in buildings’ management. It works in a plug-and-play mode.

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Avisek Naug

My thesis work is focused on advancing the state of the art in smart building monitoring and control problems. A major part of my thesis will develop combined model- and data-driven models for the energy systems of buildings and apply them for energy monitoring and optimization, fault diagnosis, and fault-adaptive control. In past work, I have already developed initial machine learning-based models for energy optimization. In this paper, I am focusing on developing a framework using bond graphs to build a model of the HVAC system and understand how different factors affect the measurement variables of this system. This information will help us do subsequent fault diagnosis by studying the characteristics of the system behavior represented by the temporal causal graph. It will also provide the basis for fault-adaptive control of buildings


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 538
Author(s):  
Nicoleta Cristina Gaitan ◽  
Ioan Ungurean

The development of the smart building concept and building automation field is based on the exponential evolution of monitoring and control technologies. Residents of the smart building must interact with the monitoring and control system. A widely used method is specific applications executed on smartphones, tablets, and PCs with Bluetooth connection to the building control system. At this time, smartphones are increasingly used in everyday life for payments, reading newspapers, monitoring activity, and interacting with smart homes. The devices used to build the control system are interconnected through a specific network, one of the most widespread being the Building Automation and Control Network (BACnet) network. Here, we propose the use of the BACnet Application Layer over Bluetooth. We present a proposal of a concept and a practical implementation that can be used to test and validate the operation of the BACnet Application Layer over Bluetooth.


2017 ◽  
Vol 107 (09) ◽  
pp. 594-599
Author(s):  
A. Magaña ◽  
G. Prof. Reinhart

Industrieroboter sind zu einer Schlüsseltechnologie in der Produktion geworden. Mit dem steigenden Einsatz von diversen Robotersystemen wächst das Bedürfnis, deren Kompatibilität zu steigern. Heutzutage gibt es keine Technologie in der Industrie, die eine standardisierte Programmierung und Steuerung von verschiedenen Robotersystemen gewährleisten kann. Dieser Fachbeitrag präsentiert ein einheitliches Konzept, welches die Anwendung von herstellerneutralen Roboterapplikationen ermöglicht.   Industrial robots have become a key technology in production. The increasing use of various robotic systems, raises the need to enhance their compatibilit.y Nowadays, there is no technology in the industry to guarantee a standardized programming and control of different robot systems. This article presents a concept enabling the use of manufacturer-independent robot applications.


2022 ◽  
Vol 12 (1) ◽  
pp. 427
Author(s):  
Jeanette Maria Pedersen ◽  
Farah Jebaei ◽  
Muhyiddine Jradi

A well-designed and properly operated building automation and control system (BACS) is key to attaining energy-efficient operation and optimal indoor conditions. In this study, three healthcare facilities of a different type, age, and use are considered as case studies to investigate the functionalities of BACS in providing optimal air quality and thermal comfort. IBACSA, the first-of-its-kind instrument for BACS assessment and smartness evaluation, is used to evaluate the current systems and their control functionalities. The BACS assessment is reported and analyzed. Then, three packages of improvements were implemented in the three cases, focusing on (1) technical systems enhancement, (2) indoor air quality and comfort, and (3) energy efficiency. It was found that the ventilation system domain is the best performer in the three considered cases with an overall score of 52%, 89% and 91% in Case A, B, and C,, respectively. On the other hand, domestic hot water domain scores are relatively low, indicating that this is an area where Danish healthcare facilities need to provide more concentration on. A key finding indicated by the assessment performed is that the three buildings score relatively very low when it comes to the impact criteria of energy flexibility and storage.


Author(s):  
Shuping Dang ◽  
Guoqing Ma ◽  
Basem Shihada ◽  
Mohamed-Slim Alouini

<pre>The smart building (SB), a promising solution to the fast-paced and continuous urbanization around the world, is an integration of a wide range of systems and services and involves a construction of multiple layers. The SB is capable of sensing, acquiring and processing a tremendous amount of data as well as performing proper action and adaptation accordingly. With rapid increases in the number of connected nodes and thereby the data transmission demand in SBs, conventional transmission and processing techniques are insufficient to provide satisfactory services. To enhance the intelligence of SBs and achieve efficient monitoring and control, both indoor visible light communications (VLC) and machine learning (ML) shall be applied jointly to construct a reliable data transmission network with powerful data processing and reasoning abilities. In this regard, we envision an SB framework enabled by indoor VLC and ML in this article.</pre>


2018 ◽  
Vol 7 (3.32) ◽  
pp. 127
Author(s):  
Francisco Javier Díaz Perez ◽  
David Chinarro ◽  
M Rosa Pino Otín ◽  
Ricardo Díaz Martín ◽  
Adib Guardiola Mouhaffel

This article presents a management model and control of energy efficiency in hotels adapted to the consumption patterns that ensure the comfort requirements of customers and integrated into the environment of an intelligent tourist complex. The analysis of the hot water system (DHW) of two hotels in the Canary Islands (Spain) in relation to their occupation, yields a solution based on renewable energies using high temperature heat pumps with aerothermal dissipation and supported by boilers of existing LPG propane. The control by programmable automatons (PLC) integrated in a system of control and acquisition of data (SCADA) optimizes the systems to maintain the maximum accumulated energy during the periods of cheapest electric tariff, by means of a system of opening and closing of hydraulic Valves that It manages to adjust the demand of DHW consumption to achieve the highest energy accumulation during the hours with the cheapest electricity tariff. The result after two and a half years of activity registration is a faster return on investment due to the optimized energy management of the system, through the control of operating hours adjusted to the needs of customers and the hourly rate. It has also been predicted that during the estimated 12 years of the system will have saved more than € 1,179,737 and thermal 8,780,005 kWh in a hotel 1 and € 1,315,104 and thermal 9,522,301 kWh in the hotel 2. This model shown can be seen how economically and energetically very efficient.  


Sign in / Sign up

Export Citation Format

Share Document