Herstellerneutrale Programmierung von Robotern*/Manufacturer-independent programming of robots - A software architecture concept for controlling and programming heterogeneous robotic systems

2017 ◽  
Vol 107 (09) ◽  
pp. 594-599
Author(s):  
A. Magaña ◽  
G. Prof. Reinhart

Industrieroboter sind zu einer Schlüsseltechnologie in der Produktion geworden. Mit dem steigenden Einsatz von diversen Robotersystemen wächst das Bedürfnis, deren Kompatibilität zu steigern. Heutzutage gibt es keine Technologie in der Industrie, die eine standardisierte Programmierung und Steuerung von verschiedenen Robotersystemen gewährleisten kann. Dieser Fachbeitrag präsentiert ein einheitliches Konzept, welches die Anwendung von herstellerneutralen Roboterapplikationen ermöglicht.   Industrial robots have become a key technology in production. The increasing use of various robotic systems, raises the need to enhance their compatibilit.y Nowadays, there is no technology in the industry to guarantee a standardized programming and control of different robot systems. This article presents a concept enabling the use of manufacturer-independent robot applications.

1994 ◽  
pp. 9-21
Author(s):  
S. Ariffin ◽  
R.H. Weston ◽  
R. Harrison

Research is described which is leading to the specification and development of a motion simulation and design environment for modular robotic systems which enables the implementation of widely applicable software processes for machine control. Current investigation is focused on defining models of application tasks in modular robotic systems. This work is based on the Real-time Control System (RCS) reference architecture proposed by researchers at the National Institute of Standards and Technology (NIST) which was designed to support motion planning and implementation. However, this architecture is modified in such a way that it supports the concept of multitasking and inter-process communication. The emphasis of work is on the hierarchical structuring of solutions, this to enable the design and control of distributed motion elements. Also discussed in this paper is a strategy for achieving sensor-based modularization of modular robotic systems in a manner which facilitates fast and efficient response to changes in the functional or environmental requirements. The paper explains how an application software architecture is unified with the open systems design approach known as Universal Machine Control (UMC), which has been devised and developed at Loughborough University to enable reuse to software and control system components.


Robotica ◽  
2019 ◽  
Vol 37 (12) ◽  
pp. 2011-2013
Author(s):  
Qining Wang ◽  
Nicola Vitiello ◽  
Samer Mohammed ◽  
Sunil Agrawal

While initially conceived for human motion augmentation, wearable robots have gradually evolved as technological aids in motion assistance and rehabilitation. There are increasing real-world applications in industrial and medical scenarios. Though efforts have been made on wearable robotic systems, e.g. robotic prostheses and exoskeletons, there are still several challenges in kinematics and actuation solutions, dynamic analysis and control of human-robot systems, neuro-control and human-robot interfaces; ergonomics and human-in-the-loop optimization. Meanwhile, real-world applications in industrial or medical scenarios are facing difficulties considering effectiveness.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 494 ◽  
Author(s):  
Lucian Stefanita Grigore ◽  
Iustin Priescu ◽  
Daniela Joita ◽  
Ionica Oncioiu

Today, industrial robots are used in dangerous environments in all sectors, including the sustainable energy sector. Sensors and processors collect and transmit information and data from users as a result of the application of robot control systems and sensory feedback. This paper proposes that the estimation of a collaborative robot system’s performance can be achieved by evaluating the mobility of robots. Scenarios have been determined in which an autonomous system has been used for intervention in crisis situations due to fire. The experimental model consists of three autonomous vehicles, two of which are ground vehicles and the other is an aerial vehicle. The conclusion of the research described in this paper highlights the fact that the integration of robotic systems made up of autonomous vehicles working in unstructured environments is difficult and at present there is no unitary analytical model.


2021 ◽  
Author(s):  
Loris Roveda ◽  
Dario Piga

AbstractIndustrial robots are increasingly used to perform tasks requiring an interaction with the surrounding environment (e.g., assembly tasks). Such environments are usually (partially) unknown to the robot, requiring the implemented controllers to suitably react to the established interaction. Standard controllers require force/torque measurements to close the loop. However, most of the industrial manipulators do not have embedded force/torque sensor(s) and such integration results in additional costs and implementation effort. To extend the use of compliant controllers to sensorless interaction control, a model-based methodology is presented in this paper. Relying on sensorless Cartesian impedance control, two Extended Kalman Filters (EKF) are proposed: an EKF for interaction force estimation and an EKF for environment stiffness estimation. Exploiting such estimations, a control architecture is proposed to implement a sensorless force loop (exploiting the provided estimated force) with adaptive Cartesian impedance control and coupling dynamics compensation (exploiting the provided estimated environment stiffness). The described approach has been validated in both simulations and experiments. A Franka EMIKA panda robot has been used. A probing task involving different materials (i.e., with different - unknown - stiffness properties) has been considered to show the capabilities of the developed EKFs (able to converge with limited errors) and control tuning (preserving stability). Additionally, a polishing-like task and an assembly task have been implemented to show the achieved performance of the proposed methodology.


2021 ◽  
Vol 59 ◽  
pp. 283-298 ◽  
Author(s):  
Claudia González ◽  
J. Ernesto Solanes ◽  
Adolfo Muñoz ◽  
Luis Gracia ◽  
Vicent Girbés-Juan ◽  
...  

2012 ◽  
Vol 253-255 ◽  
pp. 705-715 ◽  
Author(s):  
Mohamed Elbanhawi ◽  
Milan Simic

This paper presents one application of industrial robots in the automation of renewable energy production. The robot supports remote performance monitoring and maintenance of salinity gradient solar ponds. The details of the design, setup and the use of the robot sampling station and the remote Data Acquisition (DAQ) system are given here. The use of a robot arm, to position equipment and sensors, provides accurate and reliable real time data needed for autonomous monitoring and control of this type of green energy production. Robot upgrade of solar ponds can be easily integrated with existing systems. Data logged by the proposed system can be remotely accessed, plotted and analysed. Thus the simultaneous and remote monitoring of a large scale network of ponds can be easily implemented. This provides a fully automated solution to the monitoring and control of green energy production operations, which can be used to provide heat and electricity to buildings. Remote real time monitoring will facilitate the setup and operations of several solar ponds around cities.


2021 ◽  
Vol 11 (7) ◽  
pp. 3242
Author(s):  
Alessandro Gasparetto ◽  
Stefano Seriani ◽  
Lorenzo Scalera
Keyword(s):  

Nowadays, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia[...]


2009 ◽  
Vol 62-64 ◽  
pp. 275-292
Author(s):  
R.H. Weston

With increased product dynamics world-wide, the average economic lifetime of production systems is falling. Industrial robots are widely assumed to be inherently flexible and therefore that they can function as a programmable building block of response production systems. This paper reviews common capabilities of contemporary industrial robotic systems and investigates their capability to extend the useful lifetime of production system by coping with different types of product dynamic. Also considered are relative capabilities of conventional programmable robots and an emerging generation of programmable and configurable component-based machines.


Sign in / Sign up

Export Citation Format

Share Document