scholarly journals A Semantic SLAM System for Catadioptric Panoramic Cameras in Dynamic Environments

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5889
Author(s):  
Yu Zhang ◽  
Xiping Xu ◽  
Ning Zhang ◽  
Yaowen Lv

When a traditional visual SLAM system works in a dynamic environment, it will be disturbed by dynamic objects and perform poorly. In order to overcome the interference of dynamic objects, we propose a semantic SLAM system for catadioptric panoramic cameras in dynamic environments. A real-time instance segmentation network is used to detect potential moving targets in the panoramic image. In order to find the real dynamic targets, potential moving targets are verified according to the sphere’s epipolar constraints. Then, when extracting feature points, the dynamic objects in the panoramic image are masked. Only static feature points are used to estimate the pose of the panoramic camera, so as to improve the accuracy of pose estimation. In order to verify the performance of our system, experiments were conducted on public data sets. The experiments showed that in a highly dynamic environment, the accuracy of our system is significantly better than traditional algorithms. By calculating the RMSE of the absolute trajectory error, we found that our system performed up to 96.3% better than traditional SLAM. Our catadioptric panoramic camera semantic SLAM system has higher accuracy and robustness in complex dynamic environments.

2011 ◽  
Vol 130-134 ◽  
pp. 232-238
Author(s):  
Bai Fan Chen ◽  
Zi Xing Cai

A SLAMiDE(SLAM in Dynamic Environments) system is designed and realized in the paper, which supplies a holistic framework and a series of implementation methods for mobile robot SLAM in dynamic environments. A uniform target model is proposed in SLAMiDE system. The dynamic targets and static targets and the mobile robot pose are estimated simultaneously, by synthesized the research of the data association and dynamic targets detection and static SLAM based on local maps. Finally, the results of the experimental test prove that the SLAMiDE system can realize dynamic objects detection and mapping and location correctly.


2020 ◽  
Vol 9 (4) ◽  
pp. 202
Author(s):  
Junhao Cheng ◽  
Zhi Wang ◽  
Hongyan Zhou ◽  
Li Li ◽  
Jian Yao

Most Simultaneous Localization and Mapping (SLAM) methods assume that environments are static. Such a strong assumption limits the application of most visual SLAM systems. The dynamic objects will cause many wrong data associations during the SLAM process. To address this problem, a novel visual SLAM method that follows the pipeline of feature-based methods called DM-SLAM is proposed in this paper. DM-SLAM combines an instance segmentation network with optical flow information to improve the location accuracy in dynamic environments, which supports monocular, stereo, and RGB-D sensors. It consists of four modules: semantic segmentation, ego-motion estimation, dynamic point detection and a feature-based SLAM framework. The semantic segmentation module obtains pixel-wise segmentation results of potentially dynamic objects, and the ego-motion estimation module calculates the initial pose. In the third module, two different strategies are presented to detect dynamic feature points for RGB-D/stereo and monocular cases. In the first case, the feature points with depth information are reprojected to the current frame. The reprojection offset vectors are used to distinguish the dynamic points. In the other case, we utilize the epipolar constraint to accomplish this task. Furthermore, the static feature points left are fed into the fourth module. The experimental results on the public TUM and KITTI datasets demonstrate that DM-SLAM outperforms the standard visual SLAM baselines in terms of accuracy in highly dynamic environments.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110161
Author(s):  
Özgür Hastürk ◽  
Aydan M Erkmen

Simultaneous localization and mapping (SLAM) problem has been extensively studied by researchers in the field of robotics, however, conventional approaches in mapping assume a static environment. The static assumption is valid only in a small region, and it limits the application of visual SLAM in dynamic environments. The recently proposed state-of-the-art SLAM solutions for dynamic environments use different semantic segmentation methods such as mask R-CNN and SegNet; however, these frameworks are based on a sparse mapping framework (ORBSLAM). In addition, segmentation process increases the computational power, which makes these SLAM algorithms unsuitable for real-time mapping. Therefore, there is no effective dense RGB-D SLAM method for real-world unstructured and dynamic environments. In this study, we propose a novel real-time dense SLAM method for dynamic environments, where 3D reconstruction error is manipulated for identification of static and dynamic classes having generalized Gaussian distribution. Our proposed approach requires neither explicit object tracking nor object classifier, which makes it robust to any type of moving object and suitable for real-time mapping. Our method eliminates the repeated views and uses consistent data that enhance the performance of volumetric fusion. For completeness, we compare our proposed method using different types of high dynamic dataset, which are publicly available, to demonstrate the versatility and robustness of our approach. Experiments show that its tracking performance is better than other dense and dynamic SLAM approaches.


Author(s):  
Jiahui Huang ◽  
Sheng Yang ◽  
Zishuo Zhao ◽  
Yu-Kun Lai ◽  
Shi-Min Hu

AbstractWe present a practical backend for stereo visual SLAM which can simultaneously discover individual rigid bodies and compute their motions in dynamic environments. While recent factor graph based state optimization algorithms have shown their ability to robustly solve SLAM problems by treating dynamic objects as outliers, their dynamic motions are rarely considered. In this paper, we exploit the consensus of 3D motions for landmarks extracted from the same rigid body for clustering, and to identify static and dynamic objects in a unified manner. Specifically, our algorithm builds a noise-aware motion affinity matrix from landmarks, and uses agglomerative clustering to distinguish rigid bodies. Using decoupled factor graph optimization to revise their shapes and trajectories, we obtain an iterative scheme to update both cluster assignments and motion estimation reciprocally. Evaluations on both synthetic scenes and KITTI demonstrate the capability of our approach, and further experiments considering online efficiency also show the effectiveness of our method for simultaneously tracking ego-motion and multiple objects.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-24
Author(s):  
Yaojin Lin ◽  
Qinghua Hu ◽  
Jinghua Liu ◽  
Xingquan Zhu ◽  
Xindong Wu

In multi-label learning, label correlations commonly exist in the data. Such correlation not only provides useful information, but also imposes significant challenges for multi-label learning. Recently, label-specific feature embedding has been proposed to explore label-specific features from the training data, and uses feature highly customized to the multi-label set for learning. While such feature embedding methods have demonstrated good performance, the creation of the feature embedding space is only based on a single label, without considering label correlations in the data. In this article, we propose to combine multiple label-specific feature spaces, using label correlation, for multi-label learning. The proposed algorithm, mu lti- l abel-specific f eature space e nsemble (MULFE), takes consideration label-specific features, label correlation, and weighted ensemble principle to form a learning framework. By conducting clustering analysis on each label’s negative and positive instances, MULFE first creates features customized to each label. After that, MULFE utilizes the label correlation to optimize the margin distribution of the base classifiers which are induced by the related label-specific feature spaces. By combining multiple label-specific features, label correlation based weighting, and ensemble learning, MULFE achieves maximum margin multi-label classification goal through the underlying optimization framework. Empirical studies on 10 public data sets manifest the effectiveness of MULFE.


2021 ◽  
Vol 13 (2) ◽  
pp. 164
Author(s):  
Chuyao Luo ◽  
Xutao Li ◽  
Yongliang Wen ◽  
Yunming Ye ◽  
Xiaofeng Zhang

The task of precipitation nowcasting is significant in the operational weather forecast. The radar echo map extrapolation plays a vital role in this task. Recently, deep learning techniques such as Convolutional Recurrent Neural Network (ConvRNN) models have been designed to solve the task. These models, albeit performing much better than conventional optical flow based approaches, suffer from a common problem of underestimating the high echo value parts. The drawback is fatal to precipitation nowcasting, as the parts often lead to heavy rains that may cause natural disasters. In this paper, we propose a novel interaction dual attention long short-term memory (IDA-LSTM) model to address the drawback. In the method, an interaction framework is developed for the ConvRNN unit to fully exploit the short-term context information by constructing a serial of coupled convolutions on the input and hidden states. Moreover, a dual attention mechanism on channels and positions is developed to recall the forgotten information in the long term. Comprehensive experiments have been conducted on CIKM AnalytiCup 2017 data sets, and the results show the effectiveness of the IDA-LSTM in addressing the underestimation drawback. The extrapolation performance of IDA-LSTM is superior to that of the state-of-the-art methods.


2021 ◽  
pp. 016555152199863
Author(s):  
Ismael Vázquez ◽  
María Novo-Lourés ◽  
Reyes Pavón ◽  
Rosalía Laza ◽  
José Ramón Méndez ◽  
...  

Current research has evolved in such a way scientists must not only adequately describe the algorithms they introduce and the results of their application, but also ensure the possibility of reproducing the results and comparing them with those obtained through other approximations. In this context, public data sets (sometimes shared through repositories) are one of the most important elements for the development of experimental protocols and test benches. This study has analysed a significant number of CS/ML ( Computer Science/ Machine Learning) research data repositories and data sets and detected some limitations that hamper their utility. Particularly, we identify and discuss the following demanding functionalities for repositories: (1) building customised data sets for specific research tasks, (2) facilitating the comparison of different techniques using dissimilar pre-processing methods, (3) ensuring the availability of software applications to reproduce the pre-processing steps without using the repository functionalities and (4) providing protection mechanisms for licencing issues and user rights. To show the introduced functionality, we created STRep (Spam Text Repository) web application which implements our recommendations adapted to the field of spam text repositories. In addition, we launched an instance of STRep in the URL https://rdata.4spam.group to facilitate understanding of this study.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jiawei Lian ◽  
Junhong He ◽  
Yun Niu ◽  
Tianze Wang

Purpose The current popular image processing technologies based on convolutional neural network have the characteristics of large computation, high storage cost and low accuracy for tiny defect detection, which is contrary to the high real-time and accuracy, limited computing resources and storage required by industrial applications. Therefore, an improved YOLOv4 named as YOLOv4-Defect is proposed aim to solve the above problems. Design/methodology/approach On the one hand, this study performs multi-dimensional compression processing on the feature extraction network of YOLOv4 to simplify the model and improve the feature extraction ability of the model through knowledge distillation. On the other hand, a prediction scale with more detailed receptive field is added to optimize the model structure, which can improve the detection performance for tiny defects. Findings The effectiveness of the method is verified by public data sets NEU-CLS and DAGM 2007, and the steel ingot data set collected in the actual industrial field. The experimental results demonstrated that the proposed YOLOv4-Defect method can greatly improve the recognition efficiency and accuracy and reduce the size and computation consumption of the model. Originality/value This paper proposed an improved YOLOv4 named as YOLOv4-Defect for the detection of surface defect, which is conducive to application in various industrial scenarios with limited storage and computing resources, and meets the requirements of high real-time and precision.


Paleobiology ◽  
2002 ◽  
Vol 28 (3) ◽  
pp. 343-363 ◽  
Author(s):  
David C. Lees ◽  
Richard A. Fortey ◽  
L. Robin M. Cocks

Despite substantial advances in plate tectonic modeling in the last three decades, the postulated position of terranes in the Paleozoic has seldom been validated by faunal data. Fewer studies still have attempted a quantitative approach to distance based on explicit data sets. As a test case, we examine the position of Avalonia in the Ordovician (Arenig, Llanvirn, early Caradoc, and Ashgill) to mid-Silurian (Wenlock) with respect to Laurentia, Baltica, and West Gondwana. Using synoptic lists of 623 trilobite genera and 622 brachiopod genera for these four plates, summarized as Venn diagrams, we have devised proportional indices of mean endemism (ME, normalized by individual plate faunas to eliminate area biogeographic effects) and complementarity (C) for objective paleobiogeographic comparisons. These can discriminate the relative position of Avalonia by assessing the optimal arrangement of inter-centroid distances (measured as great circles) between relevant pairs of continental masses. The proportional indices are used to estimate the “goodness-of-fit” of the faunal data to two widely used dynamic plate tectonic models for these time slices, those of Smith and Rush (1998) and Ross and Scotese (1997). Our faunal data are more consistent with the latter model, which we use to suggest relationships between faunal indices for the five time slices and new rescaled inter-centroid distances between all six plate pairs. We have examined linear and exponential models in relation to continental separation for these indices. For our generic data, the linear model fits distinctly better overall. The fits of indices generated by using independent trilobite and brachiopod lists are mostly similar to each other at each time slice and for a given plate, reflecting a common biogeographic signal; however, the indices vary across the time slices. Combining groups into the same matrix in a “total evidence” analysis performs better still as a measure of distance for mean endemism in the “Scotese” plate model. Four-plate mean endemism performs much better than complementarity as an indicator of pairwise distance for either plate model in the test case.


Weed Science ◽  
2007 ◽  
Vol 55 (6) ◽  
pp. 652-664 ◽  
Author(s):  
N. C. Wagner ◽  
B. D. Maxwell ◽  
M. L. Taper ◽  
L. J. Rew

To develop a more complete understanding of the ecological factors that regulate crop productivity, we tested the relative predictive power of yield models driven by five predictor variables: wheat and wild oat density, nitrogen and herbicide rate, and growing-season precipitation. Existing data sets were collected and used in a meta-analysis of the ability of at least two predictor variables to explain variations in wheat yield. Yield responses were asymptotic with increasing crop and weed density; however, asymptotic trends were lacking as herbicide and fertilizer levels were increased. Based on the independent field data, the three best-fitting models (in order) from the candidate set of models were a multiple regression equation that included all five predictor variables (R2= 0.71), a double-hyperbolic equation including three input predictor variables (R2= 0.63), and a nonlinear model including all five predictor variables (R2= 0.56). The double-hyperbolic, three-predictor model, which did not include herbicide and fertilizer influence on yield, performed slightly better than the five-variable nonlinear model including these predictors, illustrating the large amount of variation in wheat yield and the lack of concrete knowledge upon which farmers base their fertilizer and herbicide management decisions, especially when weed infestation causes competition for limited nitrogen and water. It was difficult to elucidate the ecological first principles in the noisy field data and to build effective models based on disjointed data sets, where none of the studies measured all five variables. To address this disparity, we conducted a five-variable full-factorial greenhouse experiment. Based on our five-variable greenhouse experiment, the best-fitting model was a new nonlinear equation including all five predictor variables and was shown to fit the greenhouse data better than four previously developed agronomic models with anR2of 0.66. Development of this mathematical model, through model selection and parameterization with field and greenhouse data, represents the initial step in building a decision support system for site-specific and variable-rate management of herbicide, fertilizer, and crop seeding rate that considers varying levels of available water and weed infestation.


Sign in / Sign up

Export Citation Format

Share Document