scholarly journals JSCC-Cast: A Joint Source Channel Coding Video Encoding and Transmission System with Limited Digital Metadata

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6208
Author(s):  
Jose Balsa ◽  
Óscar Fresnedo ◽  
José A. García-Naya ◽  
Tomás Domínguez-Bolaño ◽  
Luis Castedo

This work considers the design and practical implementation of JSCC-Cast, a comprehensive analog video encoding and transmission system requiring a reduced amount of digital metadata. Suitable applications for JSCC-Cast are multicast transmissions over time-varying channels and Internet of Things wireless connectivity of end devices having severe constraints on their computational capabilities. The proposed system exhibits a similar image quality compared to existing analog and hybrid encoding alternatives such as Softcast. Its design is based on the use of linear transforms that exploit the spatial and temporal redundancy and the analog encoding of the transformed coefficients with different protection levels depending on their relevance. JSCC-Cast is compared to Softcast, which is considered the benchmark for analog and hybrid video coding, and with an all-digital H.265-based encoder. The results show that, depending on the scenario and considering image quality metrics such as the structural similarity index measure, the peak signal-to-noise ratio, and the perceived quality of the video, JSCC-Cast exhibits a performance close to that of Softcast but with less metadata and not requiring a feedback channel in order to track channel variations. Moreover, in some circumstances, the JSCC-Cast obtains a perceived quality for the frames comparable to those displayed by the digital one.

2021 ◽  
pp. 2726-2739
Author(s):  
Jalal H. Awad ◽  
Balsam D. Majeed

     Various document types play an influential role in a lot of our lives activities today; hence preserving their integrity is an important matter. Such documents have various forms, including texts, videos, sounds, and images.  The latter types' authentication will be our concern here in this paper. Images can be handled spatially by doing the proper modification directly on their pixel values or spectrally through conducting some adjustments to some of the addressed coefficients. Due to spectral (frequency) domain flexibility in handling data, the domain coefficients are utilized for the watermark embedding purpose. The integer wavelet transform (IWT), which is a wavelet transform based on the lifting scheme, is adopted in this paper in order to provide a direct way for converting image pixels' integer values to integer coefficient values rather than floating point coefficients that could be produced by the traditional wavelet transform. This direct relation can enhance the processed image quality due to avoiding the rounding operations on the floating point coefficients. The well-known parity bit approach is also utilized in this paper as an authentication mechanism, where 3 secret parity bits are used for each block in an image which is divided into non-overlapped blocks in order to enforce a form of fragile watermark approach. Thus, any alteration in the block pixels could cause the adopted (even) parity to be violated. The fragile watermarking is achieved through the modification of least significant bits ((LSBs) of certain frequency coefficients' according to the even parity condition. In spite of this image watermarking operation, the proposed method is efficient. In order to prove the efficiency of our proposed method, it was tested against standard images using measurements like peak signal to noise ratio (PSNR) and structural similarity index (SSIM).  Experiments showed promising results; the method preserves high image quality (PSNR≈ 44.4367dB, SSIM≈ 0.9956) and good tamper detection capability.


Author(s):  
Mahesh Satish Khadtare

This chapter deals with performance analysis of CUDA implementation of an image quality assessment tool based on structural similarity index (SSI). Since it had been initial created at the University of Texas in 2002, the Structural SIMilarity (SSIM) image assessment algorithm has become a valuable tool for still image and video processing analysis. SSIM provided a big giant over MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ratio) techniques because it way more closely aligned with the results that would have been obtained with subjective testing. For objective image analysis, this new technique represents as significant advancement over SSIM as the advancement that SSIM provided over PSNR. The method is computationally intensive and this poses issues in places wherever real time quality assessment is desired. We tend to develop a CUDA implementation of this technique that offers a speedup of approximately 30 X on Nvidia GTX275 and 80 X on C2050 over Intel single core processor.


2020 ◽  
Vol 10 (6) ◽  
pp. 1902
Author(s):  
Fumio Hashimoto ◽  
Kibo Ote ◽  
Takenori Oida ◽  
Atsushi Teramoto ◽  
Yasuomi Ouchi

Convolutional neural networks (CNNs) demonstrate excellent performance when employed to reconstruct the images obtained by compressed-sensing magnetic resonance imaging (CS-MRI). Our study aimed to enhance image quality by developing a novel iterative reconstruction approach that utilizes image-based CNNs and k-space correction to preserve original k-space data. In the proposed method, CNNs represent a priori information concerning image spaces. First, the CNNs are trained to map zero-filling images onto corresponding full-sampled images. Then, they recover the zero-filled part of the k-space data. Subsequently, k-space corrections, which involve the replacement of unfilled regions by original k-space data, are implemented to preserve the original k-space data. The above-mentioned processes are used iteratively. The performance of the proposed method was validated using a T2-weighted brain-image dataset, and experiments were conducted with several sampling masks. Finally, the proposed method was compared with other noniterative approaches to demonstrate its effectiveness. The aliasing artifacts in the reconstructed images obtained using the proposed approach were reduced compared to those using other state-of-the-art techniques. In addition, the quantitative results obtained in the form of the peak signal-to-noise ratio and structural similarity index demonstrated the effectiveness of the proposed method. The proposed CS-MRI method enhanced MR image quality with high-throughput examinations.


2020 ◽  
Vol 25 (2) ◽  
pp. 86-97
Author(s):  
Sandy Suryo Prayogo ◽  
Tubagus Maulana Kusuma

DVB merupakan standar transmisi televisi digital yang paling banyak digunakan saat ini. Unsur terpenting dari suatu proses transmisi adalah kualitas gambar dari video yang diterima setelah melalui proses transimisi tersebut. Banyak faktor yang dapat mempengaruhi kualitas dari suatu gambar, salah satunya adalah struktur frame dari video. Pada tulisan ini dilakukan pengujian sensitifitas video MPEG-4 berdasarkan struktur frame pada transmisi DVB-T. Pengujian dilakukan menggunakan simulasi matlab dan simulink. Digunakan juga ffmpeg untuk menyediakan format dan pengaturan video akan disimulasikan. Variabel yang diubah dari video adalah bitrate dan juga group-of-pictures (GOP), sedangkan variabel yang diubah dari transmisi DVB-T adalah signal-to-noise-ratio (SNR) pada kanal AWGN di antara pengirim (Tx) dan penerima (Rx). Hasil yang diperoleh dari percobaan berupa kualitas rata-rata gambar pada video yang diukur menggunakan metode pengukuran structural-similarity-index (SSIM). Dilakukan juga pengukuran terhadap jumlah bit-error-rate BER pada bitstream DVB-T. Percobaan yang dilakukan dapat menunjukkan seberapa besar sensitifitas bitrate dan GOP dari video pada transmisi DVB-T dengan kesimpulan semakin besar bitrate maka akan semakin buruk nilai kualitas gambarnya, dan semakin kecil nilai GOP maka akan semakin baik nilai kualitasnya. Penilitian diharapkan dapat dikembangkan menggunakan deep learning untuk memperoleh frame struktur yang tepat di kondisi-kondisi tertentu dalam proses transmisi televisi digital.


2021 ◽  
Vol 21 (1) ◽  
pp. 1-20
Author(s):  
A. K. Singh ◽  
S. Thakur ◽  
Alireza Jolfaei ◽  
Gautam Srivastava ◽  
MD. Elhoseny ◽  
...  

Recently, due to the increase in popularity of the Internet, the problem of digital data security over the Internet is increasing at a phenomenal rate. Watermarking is used for various notable applications to secure digital data from unauthorized individuals. To achieve this, in this article, we propose a joint encryption then-compression based watermarking technique for digital document security. This technique offers a tool for confidentiality, copyright protection, and strong compression performance of the system. The proposed method involves three major steps as follows: (1) embedding of multiple watermarks through non-sub-sampled contourlet transform, redundant discrete wavelet transform, and singular value decomposition; (2) encryption and compression via SHA-256 and Lempel Ziv Welch (LZW), respectively; and (3) extraction/recovery of multiple watermarks from the possibly distorted cover image. The performance estimations are carried out on various images at different attacks, and the efficiency of the system is determined in terms of peak signal-to-noise ratio (PSNR) and normalized correlation (NC), structural similarity index measure (SSIM), number of changing pixel rate (NPCR), unified averaged changed intensity (UACI), and compression ratio (CR). Furthermore, the comparative analysis of the proposed system with similar schemes indicates its superiority to them.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5540
Author(s):  
Nayeem Hasan ◽  
Md Saiful Islam ◽  
Wenyu Chen ◽  
Muhammad Ashad Kabir ◽  
Saad Al-Ahmadi

This paper proposes an encryption-based image watermarking scheme using a combination of second-level discrete wavelet transform (2DWT) and discrete cosine transform (DCT) with an auto extraction feature. The 2DWT has been selected based on the analysis of the trade-off between imperceptibility of the watermark and embedding capacity at various levels of decomposition. DCT operation is applied to the selected area to gather the image coefficients into a single vector using a zig-zig operation. We have utilized the same random bit sequence as the watermark and seed for the embedding zone coefficient. The quality of the reconstructed image was measured according to bit correction rate, peak signal-to-noise ratio (PSNR), and similarity index. Experimental results demonstrated that the proposed scheme is highly robust under different types of image-processing attacks. Several image attacks, e.g., JPEG compression, filtering, noise addition, cropping, sharpening, and bit-plane removal, were examined on watermarked images, and the results of our proposed method outstripped existing methods, especially in terms of the bit correction ratio (100%), which is a measure of bit restoration. The results were also highly satisfactory in terms of the quality of the reconstructed image, which demonstrated high imperceptibility in terms of peak signal-to-noise ratio (PSNR ≥ 40 dB) and structural similarity (SSIM ≥ 0.9) under different image attacks.


Author(s):  
Shenghan Mei ◽  
Xiaochun Liu ◽  
Shuli Mei

The locust slice images have all the features such as strong self-similarity, piecewise smoothness and nonlinear texture structure. Multi-scale interpolation operator is an effective tool to describe such structures, but it cannot overcome the influence of noise on images. Therefore, this research designed the Shannon–Cosine wavelet which possesses all the excellent properties such as interpolation, smoothness, compact support and normalization, then constructing multi-scale wavelet interpolative operator, the operator can be applied to decompose and reconstruct the images adaptively. Combining the operator with the local filter operator (mean and median), a multi-scale Shannon–Cosine wavelet denoising algorithm based on cell filtering is constructed in this research. The algorithm overcomes the disadvantages of multi-scale interpolation wavelet, which is only suitable for describing smooth signals, and realizes multi-scale noise reduction of locust slice images. The experimental results show that the proposed method can keep all kinds of texture structures in the slice image of locust. In the experiments, the locust slice images with mixture noise of Gaussian and salt–pepper are taken as examples to compare the performances of the proposed method and other typical denoising methods. The experimental results show that the Peak Signal-To-Noise Ratio (PSNR) of the denoised images obtained by the proposed method is greater 27.3%, 24.6%, 2.94%, 22.9% than Weiner filter, wavelet transform method, median and average filtering, respectively; and the Structural Similarity Index (SSIM) for measuring image quality is greater 31.1%, 31.3%, 15.5%, 10.2% than other four methods, respectively. As the variance of Gaussian white noise increases from 0.02 to 0.1, the values of PSNR and SSIM obtained by the proposed method only decrease by 11.94% and 13.33%, respectively, which are much less than other 4 methods. This shows that the proposed method possesses stronger adaptability.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 946 ◽  
Author(s):  
Wenzhao Feng ◽  
Chunhe Hu ◽  
Yuan Wang ◽  
Junguo Zhang ◽  
Hao Yan

In the wild, wireless multimedia sensor network (WMSN) communication has limited bandwidth and the transmission of wildlife monitoring images always suffers signal interference, which is time-consuming, or sometimes even causes failure. Generally, only part of each wildlife image is valuable, therefore, if we could transmit the images according to the importance of the content, the above issues can be avoided. Inspired by the progressive transmission strategy, we propose a hierarchical coding progressive transmission method in this paper, which can transmit the saliency object region (i.e. the animal) and its background with different coding strategies and priorities. Specifically, we firstly construct a convolution neural network via the MobileNet model for the detection of the saliency object region and obtaining the mask on wildlife. Then, according to the importance of wavelet coefficients, set partitioned in hierarchical tree (SPIHT) lossless coding is utilized to transmit the saliency image which ensures the transmission accuracy of the wildlife region. After that, the background region left over is transmitted via the Embedded Zerotree Wavelets (EZW) lossy coding strategy, to improve the transmission efficiency. To verify the efficiency of our algorithm, a demonstration of the transmission of field-captured wildlife images is presented. Further, comparison of results with existing EZW and discrete cosine transform (DCT) algorithms shows that the proposed algorithm improves the peak signal to noise ratio (PSNR) and structural similarity index (SSIM) by 21.11%, 14.72% and 9.47%, 6.25%, respectively.


2020 ◽  
Vol 10 (19) ◽  
pp. 6662
Author(s):  
Ji-Won Baek ◽  
Kyungyong Chung

Since the image related to road damage includes objects such as potholes, cracks, shadows, and lanes, there is a problem that it is difficult to detect a specific object. In this paper, we propose a pothole classification model using edge detection in road image. The proposed method converts RGB (red green and blue) image data, including potholes and other objects, to gray-scale to reduce the amount of computation. It detects all objects except potholes using an object detection algorithm. The detected object is removed, and a pixel value of 255 is assigned to process it as a background. In addition, to extract the characteristics of a pothole, the contour of the pothole is extracted through edge detection. Finally, potholes are detected and classified based by the (you only look once) YOLO algorithm. The performance evaluation evaluates the distortion rate and restoration rate of the image, and the validity of the model and accuracy of the classification. The result of the evaluation shows that the mean square error (MSE) of the distortion rate and restoration rate of the proposed method has errors of 0.2–0.44. The peak signal to noise ratio (PSNR) is evaluated as 50 db or higher. The structural similarity index map (SSIM) is evaluated as 0.71–0.82. In addition, the result of the pothole classification shows that the area under curve (AUC) is evaluated as 0.9.


Sign in / Sign up

Export Citation Format

Share Document