scholarly journals Autonomous Assessment of Delamination Using Scarce Raw Structural Vibration and Transfer Learning

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6239
Author(s):  
Asif Khan ◽  
Salman Khalid ◽  
Izaz Raouf ◽  
Jung-Woo Sohn ◽  
Heung-Soo Kim

Deep learning has helped achieve breakthroughs in a variety of applications; however, the lack of data from faulty states hinders the development of effective and robust diagnostic strategies using deep learning models. This work introduces a transfer learning framework for the autonomous detection, isolation, and quantification of delamination in laminated composites based on scarce low-frequency structural vibration data. Limited response data from an electromechanically coupled simulation model and from experimental testing of laminated composite coupons were encoded into high-resolution time-frequency images using SynchroExtracting Transforms (SETs). The simulated and experimental data were processed through different layers of pretrained deep learning models based on AlexNet, GoogleNet, SqueezeNet, ResNet-18, and VGG-16 to extract low- and high-level autonomous features. The support vector machine (SVM) machine learning algorithm was employed to assess how the identified autonomous features were able to assist in the detection, isolation, and quantification of delamination in laminated composites. The results obtained using these autonomous features were also compared with those obtained using handcrafted statistical features. The obtained results are encouraging and provide a new direction that will allow us to progress in the autonomous damage assessment of laminated composites despite being limited to using raw scarce structural vibration data.

2020 ◽  
Vol 12 (10) ◽  
pp. 1581 ◽  
Author(s):  
Daniel Perez ◽  
Kazi Islam ◽  
Victoria Hill ◽  
Richard Zimmerman ◽  
Blake Schaeffer ◽  
...  

Coastal ecosystems are critically affected by seagrass, both economically and ecologically. However, reliable seagrass distribution information is lacking in nearly all parts of the world because of the excessive costs associated with its assessment. In this paper, we develop two deep learning models for automatic seagrass distribution quantification based on 8-band satellite imagery. Specifically, we implemented a deep capsule network (DCN) and a deep convolutional neural network (CNN) to assess seagrass distribution through regression. The DCN model first determines whether seagrass is presented in the image through classification. Second, if seagrass is presented in the image, it quantifies the seagrass through regression. During training, the regression and classification modules are jointly optimized to achieve end-to-end learning. The CNN model is strictly trained for regression in seagrass and non-seagrass patches. In addition, we propose a transfer learning approach to transfer knowledge in the trained deep models at one location to perform seagrass quantification at a different location. We evaluate the proposed methods in three WorldView-2 satellite images taken from the coastal area in Florida. Experimental results show that the proposed deep DCN and CNN models performed similarly and achieved much better results than a linear regression model and a support vector machine. We also demonstrate that using transfer learning techniques for the quantification of seagrass significantly improved the results as compared to directly applying the deep models to new locations.


Author(s):  
Colton M. Scott ◽  
Jason R. Kolodziej

Abstract Presented in this paper is the development of a vibration-based novelty detection algorithm for locating and identifying valve wear within industrial reciprocating compressors through the combined use of time-frequency analysis, image-based pattern recognition, and one-class support vector machines. A commonly reported cause of valve wear-related machine downtime is wear in the valve seat, causing a change in flow profile into and out of the compression chamber. Seeded faults are introduced into the valve manifolds of the ESH-1 industrial compressor and vibration data collected and separated into individual crank cycles before being analyzed using time-frequency analysis. The result is processed as an image and features used for classification are extracted using 1st and 2nd order images statistics and shape factors. A one-class support vector machine learning algorithm is then trained using data collected during healthy operation and then used to both detect and locate anomalous valve behavior with a greater than 82% success rate.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2130
Author(s):  
Xiaoyan Liu ◽  
Yigang He ◽  
Lei Wang

Vibration signal analysis is an efficient online transformer fault diagnosis method for improving the stability and safety of power systems. Operation in harsh interference environments and the lack of fault samples are the most challenging aspects of transformer fault diagnosis. High-precision performance is difficult to achieve when using conventional fault diagnosis methods. Thus, this study proposes a transformer fault diagnosis method based on the adaptive transfer learning of a two-stream densely connected residual shrinkage network over vibration signals. First, novel time-frequency analysis methods (i.e., Synchrosqueezed Wavelet Transform and Synchrosqueezed Generalized S-transform) are proposed to convert vibration signals into different images, effectively expanding the samples and extracting effective features of signals. Second, a Two-stream Densely Connected Residual Shrinkage (TSDen2NetRS) network is presented to achieve a high accuracy fault diagnosis under different working conditions. Furthermore, the Residual Shrinkage layer (RS layer) is applied as a nonlinear transformation layer to the deep learning framework to remove unimportant features and enhance anti-interference performance. Lastly, an adaptive transfer learning algorithm that can automatically select the source data set by using the domain measurement method is proposed. This algorithm accelerates the training of the deep learning network and improves accuracy when the number of samples is small. Vibration experiments of transformers are conducted under different operating conditions, and their results show the effectiveness and robustness of the proposed method.


2020 ◽  
Vol 3 (2) ◽  
pp. 20 ◽  
Author(s):  
Aliyu Abubakar ◽  
Mohammed Ajuji ◽  
Ibrahim Usman Yahya

While visual assessment is the standard technique for burn evaluation, computer-aided diagnosis is increasingly sought due to high number of incidences globally. Patients are increasingly facing challenges which are not limited to shortage of experienced clinicians, lack of accessibility to healthcare facilities and high diagnostic cost. Certain number of studies were proposed in discriminating burn and healthy skin using machine learning leaving a huge and important gap unaddressed; whether burns and related skin injuries can be effectively discriminated using machine learning techniques. Therefore, we specifically use transfer learning by leveraging pre-trained deep learning models due to deficient dataset in this paper, to discriminate two classes of skin injuries—burnt skin and injured skin. Experiments were extensively conducted using three state-of-the-art pre-trained deep learning models that includes ResNet50, ResNet101 and ResNet152 for image patterns extraction via two transfer learning strategies—fine-tuning approach where dense and classification layers were modified and trained with features extracted by base layers and in the second approach support vector machine (SVM) was used to replace top-layers of the pre-trained models, trained using off-the-shelf features from the base layers. Our proposed approach records near perfect classification accuracy in categorizing burnt skin ad injured skin of approximately 99.9%.


Author(s):  
Aliyu Abubakar ◽  
Mohammed Ajuji ◽  
Ibrahim Usman Yahya

While visual assessment is the standard technique for burn evaluation, computer-aided diagnosis is increasingly sought due to high number of incidences globally. Patients are increasingly facing challenges which are not limited to shortage of experienced clinicians, lack of accessibility to healthcare facilities, and high diagnostic cost. Certain number of studies were proposed in discriminating burn and healthy skin using machine learning leaving a huge and important gap unaddressed; whether burns and related skin injuries can be effectively discriminated using machine learning techniques. Therefore, we specifically use pre-trained deep learning models due to deficient dataset to train a new model from scratch. Experiments were extensively conducted using three state-of-the-art pre-trained deep learning models that includes ResNet50, ResNet101 and ResNet152 for image patterns extraction via two transfer learning strategies: fine-tuning approach where dense and classification layers were modified and trained with features extracted by base layers, and in the second approach support vector machine (SVM) was used to replace top-layers of the pre-trained models, trained using off-the-shelf features from the base layers. Our proposed approach records near perfect classification accuracy of approximately 99.9%.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xinyu Yang ◽  
Fulin Chi ◽  
Siyu Shao ◽  
Qiang Zhang

Nowadays, deep learning has made great achievements in the field of rotating machinery fault diagnosis. But in the practical engineering scenarios, when facing a large number of unlabeled data and variable operating conditions, only using a deep learning algorithm may reduce the performance. In order to solve the above problem, this paper uses a method of combining transfer learning with deep learning. First, the deep shrinkage residual network is constructed by adding soft thresholds to extract the characteristics of bearing vibration data under noise redundancy. Then, the joint maximum mean deviation (JMMD) criterion and conditional domain adversarial (CDA) learning domain adapting network are used to align the source and target domains. At the same time, adding transferable semantic augmentation (TSA) regular items improves alignment performance between classes. Finally, the proposed model is verified by three experiments: variable load, variable speed, and variable noise, which overcomes the shortcomings of traditional deep learning and shallow transfer learning algorithms.


2021 ◽  
Vol 11 (9) ◽  
pp. 4233
Author(s):  
Biprodip Pal ◽  
Debashis Gupta ◽  
Md. Rashed-Al-Mahfuz ◽  
Salem A. Alyami ◽  
Mohammad Ali Moni

The COVID-19 pandemic requires the rapid isolation of infected patients. Thus, high-sensitivity radiology images could be a key technique to diagnose patients besides the polymerase chain reaction approach. Deep learning algorithms are proposed in several studies to detect COVID-19 symptoms due to the success in chest radiography image classification, cost efficiency, lack of expert radiologists, and the need for faster processing in the pandemic area. Most of the promising algorithms proposed in different studies are based on pre-trained deep learning models. Such open-source models and lack of variation in the radiology image-capturing environment make the diagnosis system vulnerable to adversarial attacks such as fast gradient sign method (FGSM) attack. This study therefore explored the potential vulnerability of pre-trained convolutional neural network algorithms to the FGSM attack in terms of two frequently used models, VGG16 and Inception-v3. Firstly, we developed two transfer learning models for X-ray and CT image-based COVID-19 classification and analyzed the performance extensively in terms of accuracy, precision, recall, and AUC. Secondly, our study illustrates that misclassification can occur with a very minor perturbation magnitude, such as 0.009 and 0.003 for the FGSM attack in these models for X-ray and CT images, respectively, without any effect on the visual perceptibility of the perturbation. In addition, we demonstrated that successful FGSM attack can decrease the classification performance to 16.67% and 55.56% for X-ray images, as well as 36% and 40% in the case of CT images for VGG16 and Inception-v3, respectively, without any human-recognizable perturbation effects in the adversarial images. Finally, we analyzed that correct class probability of any test image which is supposed to be 1, can drop for both considered models and with increased perturbation; it can drop to 0.24 and 0.17 for the VGG16 model in cases of X-ray and CT images, respectively. Thus, despite the need for data sharing and automated diagnosis, practical deployment of such program requires more robustness.


Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
James Dzisi Gadze ◽  
Akua Acheampomaa Bamfo-Asante ◽  
Justice Owusu Agyemang ◽  
Henry Nunoo-Mensah ◽  
Kwasi Adu-Boahen Opare

Software-Defined Networking (SDN) is a new paradigm that revolutionizes the idea of a software-driven network through the separation of control and data planes. It addresses the problems of traditional network architecture. Nevertheless, this brilliant architecture is exposed to several security threats, e.g., the distributed denial of service (DDoS) attack, which is hard to contain in such software-based networks. The concept of a centralized controller in SDN makes it a single point of attack as well as a single point of failure. In this paper, deep learning-based models, long-short term memory (LSTM) and convolutional neural network (CNN), are investigated. It illustrates their possibility and efficiency in being used in detecting and mitigating DDoS attack. The paper focuses on TCP, UDP, and ICMP flood attacks that target the controller. The performance of the models was evaluated based on the accuracy, recall, and true negative rate. We compared the performance of the deep learning models with classical machine learning models. We further provide details on the time taken to detect and mitigate the attack. Our results show that RNN LSTM is a viable deep learning algorithm that can be applied in the detection and mitigation of DDoS in the SDN controller. Our proposed model produced an accuracy of 89.63%, which outperformed linear-based models such as SVM (86.85%) and Naive Bayes (82.61%). Although KNN, which is a linear-based model, outperformed our proposed model (achieving an accuracy of 99.4%), our proposed model provides a good trade-off between precision and recall, which makes it suitable for DDoS classification. In addition, it was realized that the split ratio of the training and testing datasets can give different results in the performance of a deep learning algorithm used in a specific work. The model achieved the best performance when a split of 70/30 was used in comparison to 80/20 and 60/40 split ratios.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tianqi Tu ◽  
Xueling Wei ◽  
Yue Yang ◽  
Nianrong Zhang ◽  
Wei Li ◽  
...  

Abstract Background Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, the morphologic differences are not visible under the light microscope in certain renal biopsy tissues. Methods We propose here a deep learning-based framework for processing hyperspectral images of renal biopsy tissue to define the difference between IMN and HBV-MN based on the component of their immune complex deposition. Results The proposed framework can achieve an overall accuracy of 95.04% in classification, which also leads to better performance than support vector machine (SVM)-based algorithms. Conclusion IMN and HBV-MN can be correctly separated via the deep learning framework using hyperspectral imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid in the diagnosis of MN.


Sign in / Sign up

Export Citation Format

Share Document