scholarly journals On the Use of Dynamic Calibration to Correct Drop Counter Rain Gauge Measurements

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6321
Author(s):  
Mattia Stagnaro ◽  
Arianna Cauteruccio ◽  
Luca G. Lanza ◽  
Pak-Wai Chan

Dynamic calibration was performed in the laboratory on two catching-type drop counter rain gauges manufactured as high-sensitivity and fast response instruments by Ogawa Seiki Co. Ltd. (Japan) and the Chilbolton Rutherford Appleton Laboratory (UK). Adjustment procedures were developed to meet the recommendations of the World Meteorological Organization (WMO) for rainfall intensity measurements at the one-minute time resolution. A dynamic calibration curve was derived for each instrument to provide the drop volume variation as a function of the measured drop releasing frequency. The trueness of measurements was improved using a post-processing adjustment algorithm and made compatible with the WMO recommended maximum admissible error. The impact of dynamic calibration on the rainfall amount measured in the field at the annual and the event scale was calculated for instruments operating at two experimental sites. The rainfall climatology at the site is found to be crucial in determining the magnitude of the measurement bias, with a predominant overestimation at the low to intermediate rainfall intensity range.

2008 ◽  
Vol 16 ◽  
pp. 43-48 ◽  
Author(s):  
L. G. Lanza ◽  
L. Stagi

Abstract. This paper elaborates on the rationale behind the proposed standard limits for the accuracy of rainfall intensity measurements obtained from tipping-bucket and other types of rain gauges. Indeed, based on experimental results obtained in the course of international instrument Intercomparison initiatives and specific laboratory tests, it is shown here that the accuracy of operational rain gauges can be reduced to the limits of ±1% after proper calibration and correction. This figure is proposed as a standard accuracy requirement for the use of rain data in scientific investigations. This limit is also proposed as the reference accuracy for operational rain gauge networks in order to comply with quality assurance systems in meteorological observations.


2012 ◽  
Vol 13 (6) ◽  
pp. 1784-1798 ◽  
Author(s):  
Emad Habib ◽  
Alemseged Tamiru Haile ◽  
Yudong Tian ◽  
Robert J. Joyce

Abstract This study focuses on the evaluation of the NOAA–NCEP Climate Prediction Center (CPC) morphing technique (CMORPH) satellite-based rainfall product at fine space–time resolutions (1 h and 8 km). The evaluation was conducted during a 28-month period from 2004 to 2006 using a high-quality experimental rain gauge network in southern Louisiana, United States. The dense arrangement of rain gauges allowed for multiple gauges to be located within a single CMORPH pixel and provided a relatively reliable approximation of pixel-average surface rainfall. The results suggest that the CMORPH product has high detection skills: the probability of successful detection is ~80% for surface rain rates >2 mm h−1 and probability of false detection <3%. However, significant and alarming missed-rain and false-rain volumes of 21% and 22%, respectively, were reported. The CMORPH product has a negligible bias when assessed for the entire study period. On an event scale it has significant biases that exceed 100%. The fine-resolution CMORPH estimates have high levels of random errors; however, these errors get reduced rapidly when the estimates are aggregated in time or space. To provide insight into future improvements, the study examines the effect of temporal availability of passive microwave rainfall estimates on the product accuracy. The study also investigates the implications of using a radar-based rainfall product as an evaluation surface reference dataset instead of gauge observations. The findings reported in this study guide future enhancements of rainfall products and increase their informed usage in a variety of research and operational applications.


Author(s):  
Leon M. Headings ◽  
Kunal Kotian ◽  
Marcelo J. Dapino

Piezoelectric film sensors such as polyvinylidene flouride (PVDF) generate an electrical voltage in response to an applied mechanical stress with a remarkably high sensitivity. They provide very fast response times and do not require extensive signal conditioning. This paper presents a straightforward method of measuring the speed of sound in solid materials and structures using commercial PVDF sensors. PVDF sensors are most commonly used to measure stresses applied in the sensors’ thickness direction. However, this requires that the sensors be located in the load path, which may result in damage to the sensor or affect the response of the system. In this paper, two PVDF sensors are bonded to the side of a structure and a small impact is applied to one end. The sensors are used to measure the time for the impact-induced plane stress wave to travel between the sensors. The observed speed of the propagating stress wave is shown to be in good agreement with the theoretical speed of sound for the material and finite element calculations. In addition, the finite element simulations confirm the validity of the plane wave assumption for non-ideal and non-uniform impact inputs.


2020 ◽  
Vol 37 (7) ◽  
pp. 1189-1201 ◽  
Author(s):  
Zhao Cai ◽  
Jiufu Liu ◽  
Aimin Liao ◽  
Xuegang Li ◽  
Minhan Liao

AbstractSiphons can effectively reduce the influence of rainfall intensity on the mechanical bias of tipping-bucket rain gauges (TBRs). To identify the function of siphons for TBRs, this study investigated three types of siphons: a Texas Electronics (TE) siphon, a RIMCO (RIM) siphon, and a Sutron siphon, with both computational fluid dynamics (CFD) simulations and laboratory experiments. To provide better structural designs, further simulations were conducted to adjust two parameters of the siphons: d, the distance from the cap to the outer part, and w, the distance from the main part to the cap part. The simulation results reveal that the most significant advantage of a siphon over a rain gauge collector is to provide stable outflow for the tipping bucket. The stable outflow rates were around 1.5 g s−1 (TE) and 1.55 g s−1 (RIM), while the Sutron siphon increased from 1.75 to 2.45 g s−1. The ratio of stable outflow time to a complete siphon event was 69% (TE), 81% (Sutron), and 83% (RIM). In experiments with rainfall intensity higher than 1 mm min−1, the RIM and TE siphons showed oscillations in the outflow during consecutive siphon events, whereas the Sutron siphon was relatively stable. Further simulations showed that the recommended d and w for the TE siphon are 2.5 and 1.1 mm, respectively, while the recommendations for the RIM siphon are d = 2.5 mm and w = 0.9 mm. The manufacturer’s specifications for d and w are best for the Sutron siphon. These results help to understand the functionality of siphons for TBRs, and benefit the structural design of common siphons.


2007 ◽  
Vol 46 (9) ◽  
pp. 1438-1454 ◽  
Author(s):  
Stefano Serafin ◽  
Rossella Ferretti

Abstract The sensitivity of a mesoscale model to different microphysical parameterizations is investigated for two events of precipitation in the Mediterranean region, that is, the Mesoscale Alpine Program (MAP) intensive observation periods (IOP) 2b (19–21 September 1999) and 8 (20–22 October 1999). Simulations are performed with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5); the most commonly used bulk microphysical parameterization schemes are evaluated, with a particular focus on their impact on the forecast of rainfall. To evaluate the forecast skill, the verification is carried out quantitatively by using the observations recorded by a high-resolution rain gauge network during the MAP campaign. The results show that, for the surface rainfall forecast, all microphysical schemes produce a similar precipitation field and none of them perform significantly better than the others. The ability of different schemes to reproduce events with different ongoing microphysical processes is briefly discussed by comparing model simulations and knowledge of hydrometeor fields from radar observations. The vertical profiles of hydrometeors from two of the analyzed schemes show gross similarities with available radar observations. Last, the role of one of the parameterizations appearing in a typical bulk microphysical scheme, that is, the one of the snowfall speed, is evaluated in detail. Adjustments in the semiempirical relationships describing the fall speed of snow particles have a large impact, because a reduced snowfall speed enhances precipitation on the lee side of mountain ridges and diminishes it on the windward side. Anyway, this effect does not appear to be able to largely improve or reduce the forecast skill of the MM5 systematically; the impact of changes in the parameterization of the snow deposition velocity very likely depends on the dynamics of the event under investigation.


2020 ◽  
Author(s):  
Mauricio Zambrano-Bigiarini ◽  
Cristóbal Soto Escobar ◽  
Oscar M. Baez-Villanueva

<p>The Intensity-Duration-Frequency (IDF) curves are crucial for urban drainage design and to mitigate the impact of extreme precipitation events and floods. However, many regions lack a high-density network of rain gauges to adequately characterise the spatial distribution of precipitation events. In this work we compute IDF curves for the South-Central Chilean region (26-56°S) using the latest version of the Integrated Multi-satellitE Retrievals for GPM (IMERGv06B) for 2001-2018, with a spatial resolution of 0.10° and half-hourly temporal frequency.</p><p><br>First, we evaluated the performance of IMERGv06B against 344 rain gauge stations at daily, monthly and annual temporal scales using a point-to-pixel approach. The modified Kling-Gupta efficiency (KGE’) and its components (linear correlation, bias, and variability ratio) were selected as continuous indices of performance. Secondly, we fit maximum precipitation intensities from 14 long-term rain gauge stations to three probability density functions (Gumbel, Log-Pearson Type III, and GEV II) to evaluate: i) the impact of using 15-year rainfall time series in the computation of IDF curves instead of using the typical long-term periods (~ 30 years); and ii) to select the best distribution function for the study area. The Gumbel distribution was selected to obtain the maximum annual intensities for each grid-cell within the study area for 12 durations (0.5, 1, 2, 4, 6, 8, 10, 12, 18, 24, 48, and 72 h) and 6 return periods (T=2, 5, 10, 25, 50, and 100 years).</p><p><br>The application of the Wilcoxon Mann-Whitney test indicates that differences between IDF curves obtained from 15 years of records at the 14 long-term rain gauges and those derived from 25 years of record (or more) are not statistically significant, and therefore, 15 years of record are enough (although not optimal) to compute the IDF curves. Also, our results show that IMERGv06B is able to represent the spatial distribution of precipitation at daily, monthly and annual temporal scales over the study area. Moreover, the obtained precipitation intensities showed high spatial variability, mainly over the Near North (26.0-32.2°S) and the Far South (43.7-56.0°S). Additionally, the intensities from Central Chile (32.2-36.4°S) to the Near South (36.4-43.7°S) were systematically higher compared to the intensities described in older official governmental reports, suggesting an increase in precipitation intensities during recent decades.</p>


Sign in / Sign up

Export Citation Format

Share Document