scholarly journals Deceptive Techniques to Hide a Compressed Video Stream for Information Security

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7200
Author(s):  
Jeonghwan Heo ◽  
Jechang Jeong

With the recent development of video compression methods, video transmission on traditional devices and video distribution using networks has increased in various devices such as drones, IP cameras, and small IoT devices. As a result, the demand for encryption techniques such as MPEG-DASH for transmitting streams over networks is increasing. These video stream security methods guarantee stream confidentiality. However, they do not hide the fact that the encrypted stream is being transmitted over the network. Considering that sniffing attacks can analyze the entropy of the stream and scan huge amounts of traffic on the network, to solve this problem, the deception method is required, which appears unencrypted but a confidential stream. In this paper, we propose the new deception method that utilizes standard NAL unit rules of video codec, where the unpromised device shows the cover video and the promised device shows the secret video for deceptive security. This method allows a low encryption cost and the stream to dodge entropy-based sniffing scan attacks. The proposed stream shows that successful decoding using five standard decoders and processing performance was 61% faster than the conventional encryption method in the test signal conformance set. In addition, a network encrypted stream scan method the HEDGE showed classification results that our stream is similar to a compressed video.

2019 ◽  
Vol 17 (6) ◽  
pp. 2047-2063
Author(s):  
Taha T. Alfaqheri ◽  
Abdul Hamid Sadka

AbstractTransmission of high-resolution compressed video on unreliable transmission channels with time-varying characteristics such as wireless channels can adversely affect the decoded visual quality at the decoder side. This task becomes more challenging when the video codec computational complexity is an essential factor for low delay video transmission. High-efficiency video coding (H.265|HEVC) standard is the most recent video coding standard produced by ITU-T and ISO/IEC organisations. In this paper, a robust error resilience algorithm is proposed to reduce the impact of erroneous H.265|HEVC bitstream on the perceptual video quality at the decoder side. The proposed work takes into consideration the compatibility of the algorithm implementations with and without feedback channel update. The proposed work identifies and locates the frame’s most sensitive areas to errors and encodes them in intra mode. The intra-refresh map is generated at the encoder by utilising a grey projection method. The conducted experimental work includes testing the codec performance with the proposed work in error-free and error-prone conditions. The simulation results demonstrate that the proposed algorithm works effectively at high packet loss rates. These results come at the cost of a slight increase in the encoding bit rate overhead and computational processing time compared with the default HEVC HM16 reference software.


1998 ◽  
Vol 5 (45) ◽  
Author(s):  
Morten Vadskær Jensen ◽  
Brian Nielsen

We present the design and implementation of a high performance layered video codec, designed for deployment in bandwidth heterogeneous networks. The codec combines wavelet based subband decomposition and discrete cosine transforms to facilitate layered spatial and SNR (signal-to-noise ratio) coding for bit-rate adaptation to a wide range of receiver capabilities. We show how a test video stream can be partitioned into several distinct layers of increasing visual quality and bandwidth requirements, with the difference between highest and lowest requirement being 47 : 1. Through the use of the Visual Instruction Set on SUN's Ultra-SPARC platform we demonstrate how SIMD parallel image processing enables real-time layered encoding and decoding in software. Our 384 * 320 * 24-bit test video stream is partitioned into 21 layers at a speed of 39 frames per second and reconstructed at 28 frames per second. Our VIS accelerated encoder stages are about 3-4 times as fast as an optimized C version. We find that this speed-up is well worth the extra implementation effort.


2011 ◽  
Vol 230-232 ◽  
pp. 346-351
Author(s):  
Tarik Idbeaa ◽  
Kasmiran Jumari ◽  
Salina Abd. Samad ◽  
Ali Abdulgader ◽  
Nidal Eshah

Digital video steganography has attracted a great deal of research interest in the recent few years in applications. In this paper, we propose a method to embed and encrypt messages into video sequences by using steganography technique Based on the H.264 video coding standard. The system implemented in this work provides robust H.264 video compression constant, without significantly affecting the overall bit rate and quality of the video stream. The results indicate that the algorithm can be implemented steganography fast and efficiently and effect vision and peak signal to noise ratio (PSNR) of video sequences are almost unaffected after decoding.


2021 ◽  
Vol 5 (2) ◽  
pp. 187-195
Author(s):  
Ayu Shafira Tubagus ◽  
◽  
Rizal Saepul Mahdi ◽  
Adhi Rizal ◽  
Aries Suharso ◽  
...  

Video applications consume more energy on the Internet and can be accessed by electronic devices, due to an increase in the consumption of high-resolution and high-quality video content, presenting serious issues to delivery infrastructure that needs higher video compression technologies. The focus of this paper is to evaluate the quality of the most current codec, AV1, to its predecessor codec. The comparison was made experimentally at two video resolutions (1080p and 720p) by sampling video frames with various CRF/CQP values and testing several parameters analyses such as encoding duration, compression ratio, bit rate, Mean Square Error (MSE), and Peak Signal to Noise Ratio (PSNR). The AV1 codec is very great in terms of quality and file size, even though it is slower in terms of compression speed. The H.265/HEVC codec, on the other side, beats the other codec in terms of compression ratio. In conclusion, the H.265/HEVC codec is suggested as a material for obtaining a well compressed video with small file size and a short time.


2017 ◽  
Vol 5 (4RACEEE) ◽  
pp. 85-91
Author(s):  
Pundaraja ◽  
Manjunath

The paper is about the transmission, compression, detection of the video based on simulation for the various communication applications. The video and image compression overcomes the problem of reducing the amount of data required to the information that has to be transmitted and this saves the bandwidth required for transmission of data and memory which is required for storage purpose. Hence video compression reduces the volume of the video data with a small change in quality of the video. Compressed video transmission can be done over a channel by huffman coding for the source at transmitter side and then channel codes is done by technique called hamming. The data which is to be sent through channel is a BPSK modulated so the received data is demodulated followed by the channel decoding, source decoding using inverse of the techniques used in the transmitter side to obtain the original transmitted video. The above procedure is done for the input video taken by camera and this compressed video can be transmitted then detected at receiver by digital communication system(DCS) which is simulated in the MATLAB.


2020 ◽  
Author(s):  
Nasu Minallah ◽  
Khadem Ullah ◽  
Imran Ullah Khan ◽  
Khurram Shahzad Khattak

Abstract This article investigate the performance of various sophisticated channel coding and transmission schemes for achieving reliable transmission of H.264/AVC compressed video. The performance of the proposed schemes, namely Non-Convergent Coding (NCC), Non-Convergent Coding assisted with Differential Space Time Spreading (DSTS) and Sphere Packing (SP) modulation (NCDSTS-SP) and Convergent Coding assisted with Differential Space Time Spreading (DSTS) and Sphere Packing (SP) modulation CDSTS-SP, is analyzed using Bit Error Ratio (BER) and Peak Signal to Noise Ratio (PSNR) performance of the transmitted video stream. Channel codes incorporate artificial residual redundancy in the coded information bits, which is advantageous in the decoder side to overcome error effects and to accomplish the lowest desired BER. To cope with the very high compression ratio efficiency of the H.264/AVC video codec, our proposed system induces artificial redundancy in the compressed video bit-stream with the aid of Over Complete Mapping (OCM) and Recursive Systematic Convolution (RSC) channel codes, in order to improve the error resilience of the transmitted stream. Furthermore, overall BER reduction and improvement in objective quality performance is achieved using sophisticated transceiver design consisting of the advanced Sphere Packing (SP) modulation technique assisted by Differential Space Time Spreading (DSTS). The performance of the Iterative Soft Bit Source Decoding (SBSD) and channel decoding is analyzed using various error protection setups by allocating persistently constant overall bit rate budget. Additionally, the Iterative behavior of the SBSD assisted Recursive Systematic Convolution (RSC) code is analyzed with the aid of Extrinsic Information Transfer (EXIT) Chart. Moreover, it is observed from the experimental results that the sophisticated system design of CDSTS-SP outperforms its counterpart in terms of BER and PSNR. More specifically NCDSTS-SP results in PSNR gain of 6 dB and CDSTS-SP results in PSNR gain of 28 dB for Eb/N0 value of 10 dB, with reference to bench marker system design of NCC.


2012 ◽  
Vol 532-533 ◽  
pp. 1219-1224
Author(s):  
Hong Tao Deng

During video transmission over error prone network, compressed video bit-stream is sensitive to channel errors that may degrade the decoded pictures severely. In order to solve this problem, error concealment technique is a useful post-processing tool for recovering the lost information. In these methods, how to estimate the lost motion vector correctly is important for the quality of decoded picture. In order to recover the lost motion vector, an Decoder Motion Vector Estimation (DMVE) criterion was proposed and have well effect for recover the lost blocks. In this paper, we propose an improved error concealment method based on DMVE, which exploits the accurate motion vector by using redundant motion vector information. The experimental results with an H.264 codec show that our method improves both subjective and objective decoder reconstructed video quality, especially for sequences of drastic motion.


Author(s):  
Hamza Sajjad Ahmad ◽  
Muhammad Junaid Arshad ◽  
Muhammad Sohail Akram

To send data over the network, devices need to authenticate themselves within the network. After authentication, the device will be able to send the data in-network. After authentication, secure communication of devices is an important task that is done with an encryption method. IoT network devices have a very small circuit with low resources and low computation power. By considering low power, less memory, low computation, and all the aspect of IoT devices, an encryption technique is needed that is suitable for this type of device. As IoT networks are heterogeneous, each device has different hardware properties, and all the devices are not on one scale. To make IoT networks secure, this paper starts with the secure authentication mechanism to verify the device that wants to be a part of the network. After that, an encryption algorithm is presented that will make the communication secure. This encryption algorithm is designed by considering all the important aspects of IoT devices (low computation, low memory, and cost).


2019 ◽  
Vol 265 ◽  
pp. 07014
Author(s):  
Alexander Shiler ◽  
Elizaveta Stepanova

At present, the Internet market of things is constantly expanding; it has covered almost all the most important areas: transport, housing and communal services, industry, agriculture, telecommunications and information technology. In connection with the constant increase in the number of attacks on IoT-devices, the issue of standardization of this technology is quite acute. The features of the of existing solutions and the new proposed Russian NB-Fi standard for IoT are presented in this article from the point of view of information security.


Sign in / Sign up

Export Citation Format

Share Document