scholarly journals Small Object Detection in Traffic Scenes Based on YOLO-MXANet

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7422
Author(s):  
Xiaowei He ◽  
Rao Cheng ◽  
Zhonglong Zheng ◽  
Zeji Wang

In terms of small objects in traffic scenes, general object detection algorithms have low detection accuracy, high model complexity, and slow detection speed. To solve the above problems, an improved algorithm (named YOLO-MXANet) is proposed in this paper. Complete-Intersection over Union (CIoU) is utilized to improve loss function for promoting the positioning accuracy of the small object. In order to reduce the complexity of the model, we present a lightweight yet powerful backbone network (named SA-MobileNeXt) that incorporates channel and spatial attention. Our approach can extract expressive features more effectively by applying the Shuffle Channel and Spatial Attention (SCSA) module into the SandGlass Block (SGBlock) module while increasing the parameters by a small number. In addition, the data enhancement method combining Mosaic and Mixup is employed to improve the robustness of the training model. The Multi-scale Feature Enhancement Fusion (MFEF) network is proposed to fuse the extracted features better. In addition, the SiLU activation function is utilized to optimize the Convolution-Batchnorm-Leaky ReLU (CBL) module and the SGBlock module to accelerate the convergence of the model. The ablation experiments on the KITTI dataset show that each improved method is effective. The improved algorithm reduces the complexity and detection speed of the model while improving the object detection accuracy. The comparative experiments on the KITTY dataset and CCTSDB dataset with other algorithms show that our algorithm also has certain advantages.

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1536
Author(s):  
Deng Jiang ◽  
Bei Sun ◽  
Shaojing Su ◽  
Zhen Zuo ◽  
Peng Wu ◽  
...  

Deep learning methods have significantly improved object detection performance, but small object detection remains an extremely difficult and challenging task in computer vision. We propose a feature fusion and spatial attention-based single shot detector (FASSD) for small object detection. We fuse high-level semantic information into shallow layers to generate discriminative feature representations for small objects. To adaptively enhance the expression of small object areas and suppress the feature response of background regions, the spatial attention block learns a self-attention mask to enhance the original feature maps. We also establish a small object dataset (LAKE-BOAT) of a scene with a boat on a lake and tested our algorithm to evaluate its performance. The results show that our FASSD achieves 79.3% mAP (mean average precision) on the PASCAL VOC2007 test with input 300 × 300, which outperforms the original single shot multibox detector (SSD) by 1.6 points, as well as most improved algorithms based on SSD. The corresponding detection speed was 45.3 FPS (frame per second) on the VOC2007 test using a single NVIDIA TITAN RTX GPU. The test results of a simplified FASSD on the LAKE-BOAT dataset indicate that our model achieved an improvement of 3.5% mAP on the baseline network while maintaining a real-time detection speed (64.4 FPS).


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110113
Author(s):  
Xianghua Ma ◽  
Zhenkun Yang

Real-time object detection on mobile platforms is a crucial but challenging computer vision task. However, it is widely recognized that although the lightweight object detectors have a high detection speed, the detection accuracy is relatively low. In order to improve detecting accuracy, it is beneficial to extract complete multi-scale image features in visual cognitive tasks. Asymmetric convolutions have a useful quality, that is, they have different aspect ratios, which can be used to exact image features of objects, especially objects with multi-scale characteristics. In this paper, we exploit three different asymmetric convolutions in parallel and propose a new multi-scale asymmetric convolution unit, namely MAC block to enhance multi-scale representation ability of CNNs. In addition, MAC block can adaptively merge the features with different scales by allocating learnable weighted parameters to three different asymmetric convolution branches. The proposed MAC blocks can be inserted into the state-of-the-art backbone such as ResNet-50 to form a new multi-scale backbone network of object detectors. To evaluate the performance of MAC block, we conduct experiments on CIFAR-100, PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO 2014 datasets. Experimental results show that the detection precision can be greatly improved while a fast detection speed is guaranteed as well.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fetulhak Abdurahman ◽  
Kinde Anlay Fante ◽  
Mohammed Aliy

Abstract Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.


Author(s):  
Runze Liu ◽  
Guangwei Yan ◽  
Hui He ◽  
Yubin An ◽  
Ting Wang ◽  
...  

Background: Power line inspection is essential to ensure the safe and stable operation of the power system. Object detection for tower equipment can significantly improve inspection efficiency. However, due to the low resolution of small targets and limited features, the detection accuracy of small targets is not easy to improve. Objective: This study aimed to improve the tiny targets’ resolution while making the small target's texture and detailed features more prominent to be perceived by the detection model. Methods: In this paper, we propose an algorithm that employs generative adversarial networks to improve small objects' detection accuracy. First, the original image is converted into a super-resolution one by a super-resolution reconstruction network (SRGAN). Then the object detection framework Faster RCNN is utilized to detect objects on the super-resolution images. Result: The experimental results on two small object recognition datasets show that the model proposed in this paper has good robustness. It can especially detect the targets missed by Faster RCNN, which indicates that SRGAN can effectively enhance the detailed information of small targets by improving the resolution. Conclusion: We found that higher resolution data is conducive to obtaining more detailed information of small targets, which can help the detection algorithm achieve higher accuracy. The small object detection model based on the generative adversarial network proposed in this paper is feasible and more efficient. Compared with Faster RCNN, this model has better performance on small object detection.


2019 ◽  
Vol 11 (18) ◽  
pp. 2176 ◽  
Author(s):  
Chen ◽  
Zhong ◽  
Tan

Detecting objects in aerial images is a challenging task due to multiple orientations and relatively small size of the objects. Although many traditional detection models have demonstrated an acceptable performance by using the imagery pyramid and multiple templates in a sliding-window manner, such techniques are inefficient and costly. Recently, convolutional neural networks (CNNs) have successfully been used for object detection, and they have demonstrated considerably superior performance than that of traditional detection methods; however, this success has not been expanded to aerial images. To overcome such problems, we propose a detection model based on two CNNs. One of the CNNs is designed to propose many object-like regions that are generated from the feature maps of multi scales and hierarchies with the orientation information. Based on such a design, the positioning of small size objects becomes more accurate, and the generated regions with orientation information are more suitable for the objects arranged with arbitrary orientations. Furthermore, another CNN is designed for object recognition; it first extracts the features of each generated region and subsequently makes the final decisions. The results of the extensive experiments performed on the vehicle detection in aerial imagery (VEDAI) and overhead imagery research data set (OIRDS) datasets indicate that the proposed model performs well in terms of not only the detection accuracy but also the detection speed.


Author(s):  
Shang Jiang ◽  
Haoran Qin ◽  
Bingli Zhang ◽  
Jieyu Zheng

The loss function is a crucial factor that affects the detection precision in the object detection task. In this paper, we optimize both two loss functions for classification and localization simultaneously. Firstly, we reconstruct the classification loss function by combining the prediction results of localization, aiming to establish the correlation between localization and classification subnetworks. Compared to the existing studies, in which the correlation is only established among the positive samples and applied to improve the localization accuracy of predicted boxes, this paper utilizes the correlation to define the hard negative samples and then puts emphasis on the classification of them. Thus the whole misclassified rate for negative samples can be reduced. Besides, a novel localization loss named MIoU is proposed by incorporating a Mahalanobis distance between the predicted box and target box, eliminating the gradients inconsistency problem in the DIoU loss, further improving the localization accuracy. Finally, the proposed methods are applied to train the networks for nighttime vehicle detection. Experimental results show that the detection accuracy can be outstandingly improved with our proposed loss functions without hurting the detection speed.


2019 ◽  
Vol 11 (1) ◽  
pp. 9 ◽  
Author(s):  
Ying Zhang ◽  
Yimin Chen ◽  
Chen Huang ◽  
Mingke Gao

In recent years, almost all of the current top-performing object detection networks use CNN (convolutional neural networks) features. State-of-the-art object detection networks depend on CNN features. In this work, we add feature fusion in the object detection network to obtain a better CNN feature, which incorporates well deep, but semantic, and shallow, but high-resolution, CNN features, thus improving the performance of a small object. Also, the attention mechanism was applied to our object detection network, AF R-CNN (attention mechanism and convolution feature fusion based object detection), to enhance the impact of significant features and weaken background interference. Our AF R-CNN is a single end to end network. We choose the pre-trained network, VGG-16, to extract CNN features. Our detection network is trained on the dataset, PASCAL VOC 2007 and 2012. Empirical evaluation of the PASCAL VOC 2007 dataset demonstrates the effectiveness and improvement of our approach. Our AF R-CNN achieves an object detection accuracy of 75.9% on PASCAL VOC 2007, six points higher than Faster R-CNN.


2021 ◽  
Vol 13 (2) ◽  
pp. 200
Author(s):  
S. N. Shivappriya ◽  
M. Jasmine Pemeena Priyadarsini ◽  
Andrzej Stateczny ◽  
C. Puttamadappa ◽  
B. D. Parameshachari

Object detection is an important process in surveillance system to locate objects and it is considered as major application in computer vision. The Convolution Neural Network (CNN) based models have been developed by many researchers for object detection to achieve higher performance. However, existing models have some limitations such as overfitting problem and lower efficiency in small object detection. Object detection in remote sensing hasthe limitations of low efficiency in detecting small object and the existing methods have poor localization. Cascade Object Detection methods have been applied to increase the learning process of the detection model. In this research, the Additive Activation Function (AAF) is applied in a Faster Region based CNN (RCNN) for object detection. The proposed AAF-Faster RCNN method has the advantage of better convergence and clear bounding variance. The Fourier Series and Linear Combination of activation function are used to update the loss function. The Microsoft (MS) COCO datasets and Pascal VOC 2007/2012 are used to evaluate the performance of the AAF-Faster RCNN model. The proposed AAF-Faster RCNN is also analyzed for small object detection in the benchmark dataset. The analysis shows that the proposed AAF-Faster RCNN model has higher efficiency than state-of-art Pay Attention to Them (PAT) model in object detection. To evaluate the performance of AAF-Faster RCNN method of object detection in remote sensing, the NWPU VHR-10 remote sensing data set is used to test the proposed method. The AAF-Faster RCNN model has mean Average Precision (mAP) of 83.1% and existing PAT-SSD512 method has the 81.7%mAP in Pascal VOC 2007 dataset.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3031
Author(s):  
Jing Lian ◽  
Yuhang Yin ◽  
Linhui Li ◽  
Zhenghao Wang ◽  
Yafu Zhou

There are many small objects in traffic scenes, but due to their low resolution and limited information, their detection is still a challenge. Small object detection is very important for the understanding of traffic scene environments. To improve the detection accuracy of small objects in traffic scenes, we propose a small object detection method in traffic scenes based on attention feature fusion. First, a multi-scale channel attention block (MS-CAB) is designed, which uses local and global scales to aggregate the effective information of the feature maps. Based on this block, an attention feature fusion block (AFFB) is proposed, which can better integrate contextual information from different layers. Finally, the AFFB is used to replace the linear fusion module in the object detection network and obtain the final network structure. The experimental results show that, compared to the benchmark model YOLOv5s, this method has achieved a higher mean Average Precison (mAP) under the premise of ensuring real-time performance. It increases the mAP of all objects by 0.9 percentage points on the validation set of the traffic scene dataset BDD100K, and at the same time, increases the mAP of small objects by 3.5%.


2021 ◽  
Vol 13 (6) ◽  
pp. 1198
Author(s):  
Bi-Yuan Liu ◽  
Huai-Xin Chen ◽  
Zhou Huang ◽  
Xing Liu ◽  
Yun-Zhi Yang

Drone-based object detection has been widely applied in ground object surveillance, urban patrol, and some other fields. However, the dramatic scale changes and complex backgrounds of drone images usually result in weak feature representation of small objects, which makes it challenging to achieve high-precision object detection. Aiming to improve small objects detection, this paper proposes a novel cross-scale knowledge distillation (CSKD) method, which enhances the features of small objects in a manner similar to image enlargement, so it is termed as ZoomInNet. First, based on an efficient feature pyramid network structure, the teacher and student network are trained with images in different scales to introduce the cross-scale feature. Then, the proposed layer adaption (LA) and feature level alignment (FA) mechanisms are applied to align the feature size of the two models. After that, the adaptive key distillation point (AKDP) algorithm is used to get the crucial positions in feature maps that need knowledge distillation. Finally, the position-aware L2 loss is used to measure the difference between feature maps from cross-scale models, realizing the cross-scale information compression in a single model. Experiments on the challenging Visdrone2018 dataset show that the proposed method draws on the advantages of the image pyramid methods, while avoids the large calculation of them and significantly improves the detection accuracy of small objects. Simultaneously, the comparison with mainstream methods proves that our method has the best performance in small object detection.


Sign in / Sign up

Export Citation Format

Share Document