scholarly journals Design and Performance Verification of a Space Radiation Detection Sensor Based on Graphene

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7753
Author(s):  
Heng An ◽  
Detian Li ◽  
Shengsheng Yang ◽  
Xuan Wen ◽  
Chenguang Zhang ◽  
...  

In order to verify the performance of a graphene-based space radiation detection sensor, the radiation detection principle based on two-dimensional graphene material was analyzed according to the band structure and electric field effect of graphene. The method of space radiation detection based on graphene was studied and then a new type of space radiation sensor samples with small volume, high resolution, and radiation-resistance was formed. Using protons and electrons, the electrical performance of GFET radiation sensor was verified. The designed graphene space radiation detection sensor is expected to be applied in the radiation environment monitoring of the space station and the moon, and can also achieve technological breakthroughs in pulsar navigation and other fields.

2020 ◽  
Vol 49 (1_suppl) ◽  
pp. 194-199
Author(s):  
T. Komiyama

Japanese astronauts started staying at the International Space Station (ISS) in 2009, with each stay lasting for approximately 6 months. In total, seven Japanese astronauts have stayed at the ISS eight times. As there is no law for protection against space radiation exposure of astronauts in Japan, the Japan Aerospace Exploration Agency (JAXA) created its own rules and has applied them successfully to radiation exposure management for Japanese ISS astronauts, collaborating with ISS international partners. Regarding dose management, JAXA has implemented several dose limits to protect against both the stochastic effects of radiation and dose-dependent tissue reactions. The scope of the rules includes limiting exposure during spaceflight, exposure during several types of training, and exposure from astronaut-specific medical examinations. We, therefore, are tasked with calculating the dose from all exposure types applied to the dose limits annually for each astronaut. Whenever a Japanese astronaut is at the ISS, we monitor readings of an instrument in real-time to confirm that the exposed dose is below the set limits, as the space radiation environment can fluctuate in relation to solar activity.


2020 ◽  
Vol 2020 ◽  
pp. 1-25 ◽  
Author(s):  
Satoshi Furukawa ◽  
Aiko Nagamatsu ◽  
Mitsuru Nenoi ◽  
Akira Fujimori ◽  
Shizuko Kakinuma ◽  
...  

Space travel has advanced significantly over the last six decades with astronauts spending up to 6 months at the International Space Station. Nonetheless, the living environment while in outer space is extremely challenging to astronauts. In particular, exposure to space radiation represents a serious potential long-term threat to the health of astronauts because the amount of radiation exposure accumulates during their time in space. Therefore, health risks associated with exposure to space radiation are an important topic in space travel, and characterizing space radiation in detail is essential for improving the safety of space missions. In the first part of this review, we provide an overview of the space radiation environment and briefly present current and future endeavors that monitor different space radiation environments. We then present research evaluating adverse biological effects caused by exposure to various space radiation environments and how these can be reduced. We especially consider the deleterious effects on cellular DNA and how cells activate DNA repair mechanisms. The latest technologies being developed, e.g., a fluorescent ubiquitination-based cell cycle indicator, to measure real-time cell cycle progression and DNA damage caused by exposure to ultraviolet radiation are presented. Progress in examining the combined effects of microgravity and radiation to animals and plants are summarized, and our current understanding of the relationship between psychological stress and radiation is presented. Finally, we provide details about protective agents and the study of organisms that are highly resistant to radiation and how their biological mechanisms may aid developing novel technologies that alleviate biological damage caused by radiation. Future research that furthers our understanding of the effects of space radiation on human health will facilitate risk-mitigating strategies to enable long-term space and planetary exploration.


1995 ◽  
Vol 36 (8-12) ◽  
pp. 505-515 ◽  
Author(s):  
Ts.P. Dachev ◽  
J.V. Semkova ◽  
Yu.N. Matviichuk ◽  
R.T. Koleva ◽  
B.T. Tomov ◽  
...  

1985 ◽  
Author(s):  
E. METTLER ◽  
M. MILMAN ◽  
G. RODRIGUEZ ◽  
A. TOLIVAR

2020 ◽  
Author(s):  
Jared J. Luxton ◽  
Miles J. McKenna ◽  
Lynn E. Taylor ◽  
Kerry A. George ◽  
Sara Zwart ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alan Feiveson ◽  
Kerry George ◽  
Mark Shavers ◽  
Maria Moreno-Villanueva ◽  
Ye Zhang ◽  
...  

AbstractSpace radiation consists of energetic protons and other heavier ions. During the International Space Station program, chromosome aberrations in lymphocytes of astronauts have been analyzed to estimate received biological doses of space radiation. More specifically, pre-flight blood samples were exposed ex vivo to varying doses of gamma rays, while post-flight blood samples were collected shortly and several months after landing. Here, in a study of 43 crew-missions, we investigated whether individual radiosensitivity, as determined by the ex vivo dose–response of the pre-flight chromosome aberration rate (CAR), contributes to the prediction of the post-flight CAR incurred from the radiation exposure during missions. Random-effects Poisson regression was used to estimate subject-specific radiosensitivities from the preflight dose–response data, which were in turn used to predict post-flight CAR and subject-specific relative biological effectiveness (RBEs) between space radiation and gamma radiation. Covariates age, gender were also considered. Results indicate that there is predictive value in background CAR as well as radiosensitivity determined preflight for explaining individual differences in post-flight CAR over and above that which could be explained by BFO dose alone. The in vivo RBE for space radiation was estimated to be approximately 3 relative to the ex vivo dose response to gamma irradiation. In addition, pre-flight radiosensitivity tended to be higher for individuals having a higher background CAR, suggesting that individuals with greater radiosensitivity can be more sensitive to other environmental stressors encountered in daily life. We also noted that both background CAR and radiosensitivity tend to increase with age, although both are highly variable. Finally, we observed no significant difference between the observed CAR shortly after mission and at > 6 months post-mission.


Proceedings ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 2
Author(s):  
Arash M. Shahidi ◽  
Theodore Hughes-Riley ◽  
Carlos Oliveira ◽  
Tilak Dias

Knitted electrodes are a key component to many electronic textiles including sensing devices, such as pressure sensors and heart rate monitors; therefore, it is essential to assess the electrical performance of these knitted electrodes under different mechanical loads to understand their performance during use. The electrical properties of the electrodes could change while deforming, due to an applied load, which could occur in the uniaxial direction (while stretched) or multiaxial direction (while compressed). The properties and performance of the electrodes could also change over time when rubbed against another surface due to the frictional force and generated heat. This work investigates the behavior of a knitted electrode under different loading conditions and after multiple abrasion cycles.


2021 ◽  
Vol 2 (1) ◽  
pp. 46-62
Author(s):  
Santiago Iglesias-Baniela ◽  
Juan Vinagre-Ríos ◽  
José M. Pérez-Canosa

It is a well-known fact that the 1989 Exxon Valdez disaster caused the escort towing of laden tankers in many coastal areas of the world to become compulsory. In order to implement a new type of escort towing, specially designed to be employed in very adverse weather conditions, considerable changes in the hull form of escort tugs had to be made to improve their stability and performance. Since traditional winch and ropes technologies were only effective in calm waters, tugs had to be fitted with new devices. These improvements allowed the remodeled tugs to counterbalance the strong forces generated by the maneuvers in open waters. The aim of this paper is to perform a comprehensive literature review of the new high-performance automatic dynamic winches. Furthermore, a thorough analysis of the best available technologies regarding towline, essential to properly exploit the new winches, will be carried out. Through this review, the way in which the escort towing industry has faced this technological challenge is shown.


Sign in / Sign up

Export Citation Format

Share Document