scholarly journals Federated Transfer Learning for Authentication and Privacy Preservation Using Novel Supportive Twin Delayed DDPG (S-TD3) Algorithm for IIoT

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7793
Author(s):  
Arumugam K ◽  
Srimathi J ◽  
Sudhanshu Maurya ◽  
Senoj Joseph ◽  
Anju Asokan ◽  
...  

The Industrial Internet of Things (IIoT) has led to the growth and expansion of various new opportunities in the new Industrial Transformation. There have been notable challenges regarding the security of data and challenges related to privacy when collecting real-time and automatic data while observing applications in the industry. This paper proposes an Federated Transfer Learning for Authentication and Privacy Preservation Using Novel Supportive Twin Delayed DDPG (S-TD3) Algorithm for IIoT. In FT-Block (Federated transfer learning blockchain), several blockchains are applied to preserve privacy and security for all types of industrial applications. Additionally, by introducing the authentication mechanism based on transfer learning, blockchains can enhance the preservation and security standards for industrial applications. Specifically, Novel Supportive Twin Delayed DDPG trains the user model to authenticate specific regions. As it is considered one of the most open and scalable interacting platforms of information, it successfully helps in the positive transfer of different kinds of data between devices in more significant and local operations of the industry. It is mainly due to a single authentication factor, and the poor adaptation to regular increases in the number of users and different requirements that make the current authentication mechanism suffer a lot in IIoT. As a result, it has been very clearly observed that the given solutions are very useful.

Author(s):  
Noel Toy ◽  
Senthilnathan T

Wireless Sensor Network (WSN) is a spatially distributed network. It contains many numbers of distributed, self-directed, small, battery powered devices called sensor nodes or motes. In recent years the deployment of WSN in various application domains are growing in a rapid pace as with the upcoming boom of Internet of Things (IoT) and Internet of Everything (IoE). However, the effectiveness of the WSN deployment is restricted due to the constrained computation and power source. Hence, many researchers have been proposing new approaches and models to improve the efficiency of the domain specific WSN deployment procedures. Though, many research communities addressing various issues in WSN deployment, still the privacy and security of such networks are susceptible to various network attacks. Thus, it is necessary to practice different models for authentication and privacy preservation in a highly dynamic resource constrained WSN environment to realize the effectiveness and efficiency of the deployment. Hence, this paper addressing an authentication scheme that can reduce energy consumption without compromising on security and privacy. In order to provide a light weight authentication mechanism, this paper proposing an authentication mechanism for WSN deployment by combining the features of Elliptic Curve Cryptography (ECC) and Hexagonal numbers. The feature of ECC is used to reduce the key size and the effectiveness of generating hexagonal numbers is used for minimizing the energy consumption in a resource constrained WSN environment. The results of the proposed approach are evaluated with the different authentication models and the results were indicating that the proposed approach can perform better than the other approaches.


2021 ◽  
Vol 44 (1) ◽  
pp. 40-52
Author(s):  
Tracy Aleong ◽  
Kit Fai Pun

Radio Frequency Identification (RFID) technology transmits data wirelessly and falls under the broad classification of Automatic Identification and Data Capture (AIDC). The advances in RFID technology continue to be accepted worldwide for various tracking and monitoring type applications. This paper reviews the principle of RFID system operation using an extensive search of relevant articles from technology management and related journals, over the past two decades. It explores 1) the RFID tags operating in the ultra-high frequency (UHF) band, 2) analyses some of the major advancements of this technology in the field of sensor tagging solutions in the past two decades, and 3) discusses industry-based applications utilising UHF RFID sensor tagging solutions for process measurement data acquisition. The main challenges identified are privacy and security concerns on their applications in industry. The paper contributes to amalgamating a list of UHF RFID industry-based applications. It is expected that the findings from this review exercise would shed light on critical areas of the UHF RFID Technology.


2021 ◽  
Author(s):  
Mengfan Zhang ◽  
xiongfei wang ◽  
Qianwen Xu

The black-box impedance of the voltage source converters (VSCs) can be directly identified at the converter terminal without access to its internal control details, which greatly facilitates the converter-grid interactions. However, since the limited impedance data amount in practical industrial applications, the existing impedance identification methods cannot accurately capture characteristics of the impedance model at various operating scenarios, which is the indicators of the VSCs system stability at the changing profiles of renewables and loads. In this paper, a transfer learning based impedance identification is proposed to fill this research gap. This method can significantly reduce the required data amount used in impedance identification so that the black-box impedance-based stability method could be applied for the practical industrial application. The comparison results confirm the accuracy of the impedance model obtained by this transfer learning based impedance identification method.


Author(s):  
Narander Kumar ◽  
Jitendra Kumar Samriya

Background: Cloud computing is a service that is being accelerating its growth in the field of information technology in recent years. Privacy and security are challenging issues for cloud users and providers. Obective: This work aims at ensuring secured validation of user and protects data during transmission for users in a public IoT-cloud environment. Existing security measures however fails by their single level of security, adaptability for large amount of data and reliability. Therefore, to overcome these issues and to achieve a better solution for vulnerable data. Method: The suggested method utilizes a secure transmission in cloud using key policy attribute based encryption (KPABE). Initially, user authentication is verified. Then the user data is encrypted with the help of KP-ABE algorithm. Finally, data validation and privacy preservation are done by Burrows-Abadi-Needham (BAN) logic. This verified, and shows that the proposed encryption is correct, secure and efficient to prevent unauthorized access and prevention of data leakage so that less chances of data/identity, theft of a user is the analysis and performed by KP-ABE, that is access control approach. Results: Here the method attains the maximum of 88.35% of validation accuracy with a minimum 8.78ms encryption time, which is better when, compared to the existing methods. The proposed mechanism is done by MATLAB. The performance of the implemented method is calculated based on the time of encryption and decryption, execution time and validation accuracy. Conclusion: Thus the proposed approach attains the high IoT-cloud data security and increases the speed for validation and transmission with high accuracy and used for cyber data science processing.


Author(s):  
Jitendra Singh ◽  
Vikas Kumar

Cloud computing is expanding in reach, with its utility-based features and enhanced agility. Still, there is a big concern about the privacy and security of the data. Because of these concerns, third-party cloud users are employing the cloud only for less sensitive data, and the advantage of cloud computing is not fully harnessed. In order to ensure the privacy and security of data, proper compliance and regulatory standards become very important for the cloud domain. Although a number of such standards exist for the traditional computing, they must be modified for their wider adoption to the cloud platforms. This chapter considers the worldwide available standards in the technical and non-technical categories for wider coverage of the cloud platforms. In the technical category, security standards presently followed by cloud computing have been discussed, while in the non-technical category, privacy and accounting standards like HIPPA, SAS 70, GAPP, etc. have been considered.


Author(s):  
Wei Qi Yan ◽  
Xiaotian Wu ◽  
Feng Liu

Despite research work achieving progress in preserving the privacy of user profiles and visual surveillance, correcting problems in social media have not taken a great step. The reason is the lack of effective modelling, computational algorithms, and resultant evaluations in quantitative research. In this article, the authors take social media into consideration and link users together under the umbrella of social networks so as to exploit a way that the potential problems related to media privacy could be solved. The author's contributions are to propose tensor product-based progressive scrambling approaches for privacy preservation of social media and apply our approaches to the given social media which may encapsulate privacy before being viewed so as to achieve the goal of privacy preservation in anonymity, diverse and closeness. These approaches fully preserve the media information of the scrambled image and make sure it is able to be restored. The results show the proposed privacy persevering approaches are effective and have outstanding performance in media privacy preservation.


Author(s):  
Mike Gregory ◽  
Cynthia Roberts

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) was initially enacted as an administrative simplification to standardize electronic transmission of common administrative and financial transactions. The program also calls for implementation specifications regarding privacy and security standards to protect the confidentiality and integrity of individually identifiable health information or protected health information. The Affordable Care Act further expanded many of the protective provisions set forth by HIPAA. Since its implementation, healthcare organizations around the nation have invested billions of dollars and have cycled through numerous program attempts aimed at meeting these standards. This chapter reviews the process taken by one organization to review the privacy policy in place utilizing a maturity model, identify deficiencies, and lead change in order to heighten the maturity of the system. The authors conclude with reflection related to effectiveness of the process as well as implications for practice.


Author(s):  
Alfredo Cuzzocrea ◽  
Vincenzo Russo

The problem of ensuring the privacy and security of OLAP data cubes (Gray et al., 1997) arises in several fields ranging from advanced Data Warehousing (DW) and Business Intelligence (BI) systems to sophisticated Data Mining (DM) tools. In DW and BI systems, decision making analysts aim at avoiding that malicious users access perceptive ranges of multidimensional data in order to infer sensitive knowledge, or attack corporate data cubes via violating user rules, grants and revokes. In DM tools, domain experts aim at avoiding that malicious users infer critical-for-thetask knowledge from authoritative DM results such as frequent item sets, patterns and regularities, clusters, and discovered association rules. In more detail, the former application scenario (i.e., DW and BI systems) deals with both the privacy preservation and the security of data cubes, whereas the latter one (i.e., DM tools) deals with privacy preserving OLAP issues solely. With respect to security issues, although security aspects of information systems include a plethora of topics ranging from cryptography to access control and secure digital signature, in our work we particularly focus on access control techniques for data cubes, and remand the reader to the active literature for the other orthogonal matters. Specifically, privacy preservation of data cubes refers to the problem of ensuring the privacy of data cube cells (and, in turn, that of queries defined over collections of data cube cells), i.e. hiding sensitive information and knowledge during data management activities, according to the general guidelines drawn by Sweeney in her seminar paper (Sweeney, 2002), whereas access control issues refer to the problem of ensuring the security of data cube cells, i.e. restricting the access of unauthorized users to specific sub-domains of the target data cube, according to well-known concepts studied and assessed in the context of DBMS security. Nonetheless, it is quite straightforward foreseeing that these two even distinct aspects should be meaningfully integrated in order to ensure both the privacy and security of complex data cubes, i.e. data cubes built on top of complex data/knowledge bases. During last years, these topics have became of great interest for the Data Warehousing and Databases research communities, due to their exciting theoretical challenges as well as their relevance and practical impact in modern real-life OLAP systems and applications. On a more conceptual plane, theoretical aspects are mainly devoted to study how probability and statistics schemes as well as rule-based models can be applied in order to efficiently solve the above-introduced problems. On a more practical plane, researchers and practitioners aim at integrating convenient privacy preserving and security solutions within the core layers of commercial OLAP server platforms. Basically, to tackle deriving privacy preservation challenges in OLAP, researchers have proposed models and algorithms that can be roughly classified within two main classes: restriction-based techniques, and data perturbation techniques. First ones propose limiting the number of query kinds that can be posed against the target OLAP server. Second ones propose perturbing data cells by means of random noise at various levels, ranging from schemas to queries. On the other hand, access control solutions in OLAP are mainly inspired by the wide literature developed in the context of controlling accesses to DBMS, and try to adapt such schemes in order to control accesses to OLAP systems.


Sign in / Sign up

Export Citation Format

Share Document