scholarly journals Enhancing EEG-Based Mental Stress State Recognition Using an Improved Hybrid Feature Selection Algorithm

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8370
Author(s):  
Ala Hag ◽  
Dini Handayani ◽  
Maryam Altalhi ◽  
Thulasyammal Pillai ◽  
Teddy Mantoro ◽  
...  

In real-life applications, electroencephalogram (EEG) signals for mental stress recognition require a conventional wearable device. This, in turn, requires an efficient number of EEG channels and an optimal feature set. This study aims to identify an optimal feature subset that can discriminate mental stress states while enhancing the overall classification performance. We extracted multi-domain features within the time domain, frequency domain, time-frequency domain, and network connectivity features to form a prominent feature vector space for stress. We then proposed a hybrid feature selection (FS) method using minimum redundancy maximum relevance with particle swarm optimization and support vector machines (mRMR-PSO-SVM) to select the optimal feature subset. The performance of the proposed method is evaluated and verified using four datasets, namely EDMSS, DEAP, SEED, and EDPMSC. To further consolidate, the effectiveness of the proposed method is compared with that of the state-of-the-art metaheuristic methods. The proposed model significantly reduced the features vector space by an average of 70% compared with the state-of-the-art methods while significantly increasing overall detection performance.

Author(s):  
ALA HAG ◽  
Dini Handayani ◽  
Maryam Altalhi ◽  
Thulasyammal Pillai ◽  
Teddy Mantoro ◽  
...  

Mental stress state recognition using electroencephalogram (EEG) signals for real-life applications needs a conventional wearable device. This requires an efficient number of EEG channels and an optimal feature set. The main objective of the study is to identify an optimal feature subset that can best discriminate mental stress states while enhancing the overall performance. Thus, multi-domain feature extraction methods were employed, namely, time domain, frequency domain, time-frequency domain, and network connectivity features, to form a large feature vector space. To avoid the computational complexity of high dimensional space, a hybrid feature selection (FS) method of minimum Redundancy Maximum Relevance with Particle Swarm Optimization and Support Vector Machine (mRMR-PSO-SVM) is proposed to remove noise, redundant, and irrelevant features and keep the optimal feature subset. The performance of the proposed method is evaluated and verified using four datasets, namely EDMSS, DEAP, SEED, and EDPMSC. To further consolidate, the effectiveness of the proposed method is compared with that of the state-of-the-art heuristic methods. The proposed model has significantly reduced the features vector space by an average of 70% in comparison to the state-of-the-art methods while significantly increasing overall detection performance.


2020 ◽  
Vol 30 (11) ◽  
pp. 2050017 ◽  
Author(s):  
Jian Lian ◽  
Yunfeng Shi ◽  
Yan Zhang ◽  
Weikuan Jia ◽  
Xiaojun Fan ◽  
...  

Feature selection plays a vital role in the detection and discrimination of epileptic seizures in electroencephalogram (EEG) signals. The state-of-the-art EEG classification techniques commonly entail the extraction of the multiple features that would be fed into classifiers. For some techniques, the feature selection strategies have been used to reduce the dimensionality of the entire feature space. However, most of these approaches focus on the performance of classifiers while neglecting the association between the feature and the EEG activity itself. To enhance the inner relationship between the feature subset and the epileptic EEG task with a promising classification accuracy, we propose a machine learning-based pipeline using a novel feature selection algorithm built upon a knockoff filter. First, a number of temporal, spectral, and spatial features are extracted from the raw EEG signals. Second, the proposed feature selection algorithm is exploited to obtain the optimal subgroup of features. Afterwards, three classifiers including [Formula: see text]-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) are used. The experimental results on the Bonn dataset demonstrate that the proposed approach outperforms the state-of-the-art techniques, with accuracy as high as 99.93% for normal and interictal EEG discrimination and 98.95% for interictal and ictal EEG classification. Meanwhile, it has achieved satisfactory sensitivity (95.67% in average), specificity (98.83% in average), and accuracy (98.89% in average) over the Freiburg dataset.


2013 ◽  
Vol 333-335 ◽  
pp. 1430-1434
Author(s):  
Lin Fang Hu ◽  
Lei Qiao ◽  
Min De Huang

A feature selection algorithm based on the optimal hyperplane of SVM is raised. Using the algorithm, the contribution to the classification of each feature in the candidate feature set is test, and then the feature subset with best classification ability will be selected. The algorithm is used in the recognition process of storm monomers in weather forecast, and experimental data show that the classification ability of the features can be effectively evaluated; the optimal feature subset is selected to enhance the working performance of the classifier.


2019 ◽  
Vol 16 (4) ◽  
pp. 332-339
Author(s):  
Liangwei Yang ◽  
Hui Gao ◽  
Zhen Liu ◽  
Lixia Tang

Phages are widely distributed in locations populated by bacterial hosts. Phage proteins can be divided into two main categories, that is, virion and non-virion proteins with different functions. In practice, people mainly use phage virion proteins to clarify the lysis mechanism of bacterial cells and develop new antibacterial drugs. Accurate identification of phage virion proteins is therefore essential to understanding the phage lysis mechanism. Although some computational methods have been focused on identifying virion proteins, the result is not satisfying which gives more room for improvement. In this study, a new sequence-based method was proposed to identify phage virion proteins using g-gap tripeptide composition. In this approach, the protein features were firstly extracted from the ggap tripeptide composition. Subsequently, we obtained an optimal feature subset by performing incremental feature selection (IFS) with information gain. Finally, the support vector machine (SVM) was used as the classifier to discriminate virion proteins from non-virion proteins. In 10-fold crossvalidation test, our proposed method achieved an accuracy of 97.40% with AUC of 0.9958, which outperforms state-of-the-art methods. The result reveals that our proposed method could be a promising method in the work of phage virion proteins identification.


Author(s):  
ZENGLIN XU ◽  
IRWIN KING ◽  
MICHAEL R. LYU

Feature selection is an important task in pattern recognition. Support Vector Machine (SVM) and Minimax Probability Machine (MPM) have been successfully used as the classification framework for feature selection. However, these paradigms cannot automatically control the balance between prediction accuracy and the number of selected features. In addition, the selected feature subsets are also not stable in different data partitions. Minimum Error Minimax Probability Machine (MEMPM) has been proposed for classification recently. In this paper, we outline MEMPM to select the optimal feature subset with good stability and automatic balance between prediction accuracy and the size of feature subset. The experiments against feature selection with SVM and MPM show the advantages of the proposed MEMPM formulation in stability and automatic balance between the feature subset size and the prediction accuracy.


Author(s):  
Hui Wang ◽  
Li Li Guo ◽  
Yun Lin

Automatic modulation recognition is very important for the receiver design in the broadband multimedia communication system, and the reasonable signal feature extraction and selection algorithm is the key technology of Digital multimedia signal recognition. In this paper, the information entropy is used to extract the single feature, which are power spectrum entropy, wavelet energy spectrum entropy, singular spectrum entropy and Renyi entropy. And then, the feature selection algorithm of distance measurement and Sequential Feature Selection(SFS) are presented to select the optimal feature subset. Finally, the BP neural network is used to classify the signal modulation. The simulation result shows that the four-different information entropy can be used to classify different signal modulation, and the feature selection algorithm is successfully used to choose the optimal feature subset and get the best performance.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Zhi Chen ◽  
Tao Lin ◽  
Ningjiu Tang ◽  
Xin Xia

The extensive applications of support vector machines (SVMs) require efficient method of constructing a SVM classifier with high classification ability. The performance of SVM crucially depends on whether optimal feature subset and parameter of SVM can be efficiently obtained. In this paper, a coarse-grained parallel genetic algorithm (CGPGA) is used to simultaneously optimize the feature subset and parameters for SVM. The distributed topology and migration policy of CGPGA can help find optimal feature subset and parameters for SVM in significantly shorter time, so as to increase the quality of solution found. In addition, a new fitness function, which combines the classification accuracy obtained from bootstrap method, the number of chosen features, and the number of support vectors, is proposed to lead the search of CGPGA to the direction of optimal generalization error. Experiment results on 12 benchmark datasets show that our proposed approach outperforms genetic algorithm (GA) based method and grid search method in terms of classification accuracy, number of chosen features, number of support vectors, and running time.


Feature selection in multispectral high dimensional information is a hard labour machine learning problem because of the imbalanced classes present in the data. The existing Most of the feature selection schemes in the literature ignore the problem of class imbalance by choosing the features from the classes having more instances and avoiding significant features of the classes having less instances. In this paper, SMOTE concept is exploited to produce the required samples form minority classes. Feature selection model is formulated with the objective of reducing number of features with improved classification performance. This model is based on dimensionality reduction by opt for a subset of relevant spectral, textural and spatial features while eliminating the redundant features for the purpose of improved classification performance. Binary ALO is engaged to solve the feature selection model for optimal selection of features. The proposed ALO-SVM with wrapper concept is applied to each potential solution obtained during optimization step. The working of this methodology is tested on LANDSAT multispectral image.


The optimal feature subset selection over very high dimensional data is a vital issue. Even though the optimal features are selected, the classification of those selected features becomes a key complicated task. In order to handle these problems, a novel, Accelerated Simulated Annealing and Mutation Operator (ASAMO) feature selection algorithm is suggested in this work. For solving the classification problem, the Fuzzy Minimal Consistent Class Subset Coverage (FMCCSC) problem is introduced. In FMCCSC, consistent subset is combined with the K-Nearest Neighbour (KNN) classifier known as FMCCSC-KNN classifier. The two data sets Dorothea and Madelon from UCI machine repository are experimented for optimal feature selection and classification. The experimental results substantiate the efficiency of proposed ASAMO with FMCCSC-KNN classifier compared to Particle Swarm Optimization (PSO) and Accelerated PSO feature selection algorithms.


2020 ◽  
Vol 17 (5) ◽  
pp. 721-730
Author(s):  
Kamal Bashir ◽  
Tianrui Li ◽  
Mahama Yahaya

The most frequently used machine learning feature ranking approaches failed to present optimal feature subset for accurate prediction of defective software modules in out-of-sample data. Machine learning Feature Selection (FS) algorithms such as Chi-Square (CS), Information Gain (IG), Gain Ratio (GR), RelieF (RF) and Symmetric Uncertainty (SU) perform relatively poor at prediction, even after balancing class distribution in the training data. In this study, we propose a novel FS method based on the Maximum Likelihood Logistic Regression (MLLR). We apply this method on six software defect datasets in their sampled and unsampled forms to select useful features for classification in the context of Software Defect Prediction (SDP). The Support Vector Machine (SVM) and Random Forest (RaF) classifiers are applied on the FS subsets that are based on sampled and unsampled datasets. The performance of the models captured using Area Ander Receiver Operating Characteristics Curve (AUC) metrics are compared for all FS methods considered. The Analysis Of Variance (ANOVA) F-test results validate the superiority of the proposed method over all the FS techniques, both in sampled and unsampled data. The results confirm that the MLLR can be useful in selecting optimal feature subset for more accurate prediction of defective modules in software development process


Sign in / Sign up

Export Citation Format

Share Document