scholarly journals A Wideband Noise and Harmonic Distortion Canceling Low-Noise Amplifier for High-Frequency Ultrasound Transducers

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8476
Author(s):  
Yuxuan Tang ◽  
Yulang Feng ◽  
He Hu ◽  
Cheng Fang ◽  
Hao Deng ◽  
...  

This paper presents a wideband low-noise amplifier (LNA) front-end with noise and distortion cancellation for high-frequency ultrasound transducers. The LNA employs a resistive shunt-feedback structure with a feedforward noise-canceling technique to accomplish both wideband impedance matching and low noise performance. A complementary CMOS topology was also developed to cancel out the second-order harmonic distortion and enhance the amplifier linearity. A high-frequency ultrasound (HFUS) and photoacoustic (PA) imaging front-end, including the proposed LNA and a variable gain amplifier (VGA), was designed and fabricated in a 180 nm CMOS process. At 80 MHz, the front-end achieves an input-referred noise density of 1.36 nV/sqrt (Hz), an input return loss (S11) of better than −16 dB, a voltage gain of 37 dB, and a total harmonic distortion (THD) of −55 dBc while dissipating a power of 37 mW, leading to a noise efficiency factor (NEF) of 2.66.

Author(s):  
Abu Bakar Ibrahim ◽  
Che Zalina Zulkifli ◽  
Shamsul Arrieya Ariffin ◽  
Nurul Husna Kahar

The low noise amplifier (LNA) circuit is exceptionally imperative as it promotes and initializes general execution performance and quality of the mobile communication system. LNA's design in radio frequency (R.F.) circuit requires the trade-off numerous imperative features' including gain, noise figure (N.F.), bandwidth, stability, sensitivity, power consumption, and complexity. Improvements to the LNA's overall performance should be made to fulfil the worldwide interoperability for microwave access (WiMAX) specifications' prerequisites. The development of front-end receiver, particularly the LNA, is genuinely pivotal for long-distance communications up to 50 km for a particular system with particular requirements. The LNA architecture has recently been designed to concentrate on a single transistor, cascode, or cascade constrained in gain, bandwidth, and noise figure.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
S. Chrisben Gladson ◽  
Adith Hari Narayana ◽  
V. Thenmozhi ◽  
M. Bhaskar

AbstractDue to the increased processing data rates, which is required in applications such as fifth-generation (5G) wireless networks, the battery power will discharge rapidly. Hence, there is a need for the design of novel circuit topologies to cater the demand of ultra-low voltage and low power operation. In this paper, a low-noise amplifier (LNA) operating at ultra-low voltage is proposed to address the demands of battery-powered communication devices. The LNA dual shunt peaking and has two modes of operation. In low-power mode (Mode-I), the LNA achieves a high gain ($$S21$$ S 21 ) of 18.87 dB, minimum noise figure ($${NF}_{min.}$$ NF m i n . ) of 2.5 dB in the − 3 dB frequency range of 2.3–2.9 GHz, and third-order intercept point (IIP3) of − 7.9dBm when operating at 0.6 V supply. In high-power mode (Mode-II), the achieved gain, NF, and IIP3 are 21.36 dB, 2.3 dB, and 13.78dBm respectively when operating at 1 V supply. The proposed LNA is implemented in UMC 180 nm CMOS process technology with a core area of $$0.40{\mathrm{ mm}}^{2}$$ 0.40 mm 2 and the post-layout validation is performed using Cadence SpectreRF circuit simulator.


2009 ◽  
Vol 30 (1) ◽  
pp. 015001 ◽  
Author(s):  
Yang Yi ◽  
Gao Zhuo ◽  
Yang Liqiong ◽  
Huang Lingyi ◽  
Hu Weiwu

2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000207-000210
Author(s):  
Martin Oppermann ◽  
Felix Thurow ◽  
Ralf Rieger

Abstract Next generation of RF sensor modules, mainly for airborne applications, will cover a variety of multifunction in terms of different operating modes, e.g. Radar, EW and Communications / Datalinks. The operating frequencies will cover a bandwidth of > 10 GHz and for realisation of modern Active Electronically Steered Antennas (AESA) the Transmit/Receive (T/R) modules have to match with challenging geometry demands, and RF requirements, like switching and filtering between different operational frequencies in transmit and receive mode. New GaN technology based MMICs, e.g. LNA, HPA are in development and multifunctional components (MFC MMICs) cover more than one RF function in one chip. Different front end demonstrators will be presented, based on multilayer ceramic (LTCC) and RF-PCB and associated assembly technologies, like chip&wire and SMD reflow soldering. These TRM front ends include a Low Noise Amplifier with an integrated Switch (LNA/SW) and for characterisation the measured Noise Figure (NF), a key characteristic for receive performance, will be compared. The need for high integration on module level is obvious and therefore specific demands for low loss ceramic and PCB based modules, packages and housings exist.


Sign in / Sign up

Export Citation Format

Share Document