scholarly journals A Non-Invasive IR Sensor Technique to Differentiate Parkinson’s Disease from Other Neurological Disorders Using Autonomic Dysfunction as Diagnostic Criterion

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 266
Author(s):  
Brindha Anbalagan ◽  
Sunitha Karnam Karnam Anantha ◽  
Sridhar P. Arjunan ◽  
Venkatraman Balasubramanian ◽  
Menaka Murugesan ◽  
...  

Early diagnosis of Parkinson’s disease (PD) plays a critical role in effective disease management and delayed disease progression. This study reports a technique that could diagnose and differentiate PD from essential tremor (ET) in its earlier stage using a non-motor phenotype. Autonomic dysfunction, an early symptom in PD patients, is caused by α-synuclein pathogenesis in the central nervous system and can be diagnosed using skin vasomotor response to cold stimuli. In this study, the investigations were performed using data collected from 20 PD, 20 ET and 20 healthy subjects. Infrared thermography was used for the cold stress test to observe subjects’ hand temperature before and after cold stimuli. The results show that the recovery rate of hand temperature was significantly different between the groups. The data obtained in the cold stress test were verified using Pearson’s cross-correlation technique, which showed that few disease parameters like medication and motor rating score had an impact on the recovery rate of hand temperature in PD subjects. The characteristics of the three groups were compared and classified using the k-means clustering algorithm. The sensitivity and specificity of these techniques were analyzed using an Receiver Operating Characteristic (ROC) curve analyzer. These results show that this non-invasive technique can be used as an effective tool in the diagnosis and differentiation of PD in its early stage.

2015 ◽  
Vol 21 (7) ◽  
pp. 723-728 ◽  
Author(s):  
Amy M. Hellman ◽  
Shital P. Shah ◽  
Stephanie M. Pawlowski ◽  
John E. Duda ◽  
James F. Morley

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Mathias Møller Purup ◽  
Karoline Knudsen ◽  
Pall Karlsson ◽  
Astrid Juhl Terkelsen ◽  
Per Borghammer

Background. Patients with Parkinson’s disease (PD) often show peripheral autonomic dysfunction and depositions of pathological alpha-synuclein aggregates in the skin. However, functional consequences of this skin involvement have received little attention. Objective. To determine thermographic differences in the skin between healthy controls (HCs) and PD patients on hands, feet, and trunk and to correlate findings with symptoms and signs of dysautonomia. Between-group differences in autonomic parameters and questionnaires were explored. Methods. Twenty-one PD patients and 19 HCs were examined by thermographic infrared imaging of standardized anatomical locations on the trunk and upper and lower extremities at baseline and after exposure to cold stress test (CST). Thermal recovery rates (RRs) were determined on the basis of thermograms. Correlation analyses between alterations in skin temperature and autonomic dysfunction were performed. Results. The most significant RR difference between PD patients and HCs was seen on the fifth distal phalanx 10 minutes post-CST (mean RR ± SD: 51 ± 18% vs. 70 ± 23%, p = 0.003). No between-group differences were seen in baseline or post-CST values of the feet. No correlations were seen between thermal parameters and clinical and autonomic data. In the HC group, a positive, moderate correlation was seen between post-CST recovery values on the 3rd and 5th phalanx and body mass index (BMI) (r = 0.661, p = 0.002). Conclusions. The PD patients exhibited significant reduction in RR compared to HC and patients also displayed altered thermal responses in multiple anatomical locations. Thus, infrared thermography could become an important future tool in investigation of autonomic deficiency in PD.


Author(s):  
Jose Ignacio Priego-Quesada ◽  
Alexis Gandia-Soriano ◽  
Maria Teresa Pellicer-Chenoll ◽  
Ignacio Catalá-Vilaplana ◽  
Jose Luis Bermejo-Ruiz ◽  
...  

The objective of this preliminary study was to determine the reproducibility of lower limbs skin temperature after cold stress test using the Game Ready system. Skin temperature of fourteen participants was measured before and after cold stress test using the Game Ready system and it was repeated the protocol in four times: at 9:00, at 11:00, at 19:00, and at 9:00 h of the posterior day. To assess skin temperature recovery after cold stress test, a logarithmic equation for each region was calculated, and constant (β0) and slope (β1) coefficients were obtained. Intraclass correlation coefficient (ICC), standard error (SE), and within-subject coefficient of variation (CV) were determined. No differences were observed between measurement times in any of the regions for the logarithmic coefficients (p > 0.38). Anterior thigh (β0 ICC 0.33–0.47; β1 ICC 0.31–0.43) and posterior knee (β0 ICC 0.42–0.58; β1 ICC 0.28–0.57) were the regions with the lower ICCs, and the other regions presented values with a fair and good reproducibility (ICC > 0.41). Posterior leg was the region with the better reproducibility (β0 ICC 0.68–0.78; β1 ICC 0.59–0.74; SE 3–4%; within-subject CV 7–12%). In conclusion, cold stress test using Game Ready system showed a fair and good reproducibility, especially when the posterior leg was the region assessed.


2018 ◽  
Vol 129 (4) ◽  
pp. e9
Author(s):  
L. Brabenec ◽  
J. Mekyska ◽  
Z. Galáž ◽  
P. Klobušiakova ◽  
M. Koštálová ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document