scholarly journals Brain Tumor/Mass Classification Framework Using Magnetic-Resonance-Imaging-Based Isolated and Developed Transfer Deep-Learning Model

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 372
Author(s):  
Muhannad Faleh Alanazi ◽  
Muhammad Umair Ali ◽  
Shaik Javeed Hussain ◽  
Amad Zafar ◽  
Mohammed Mohatram ◽  
...  

With the advancement in technology, machine learning can be applied to diagnose the mass/tumor in the brain using magnetic resonance imaging (MRI). This work proposes a novel developed transfer deep-learning model for the early diagnosis of brain tumors into their subclasses, such as pituitary, meningioma, and glioma. First, various layers of isolated convolutional-neural-network (CNN) models are built from scratch to check their performances for brain MRI images. Then, the 22-layer, binary-classification (tumor or no tumor) isolated-CNN model is re-utilized to re-adjust the neurons’ weights for classifying brain MRI images into tumor subclasses using the transfer-learning concept. As a result, the developed transfer-learned model has a high accuracy of 95.75% for the MRI images of the same MRI machine. Furthermore, the developed transfer-learned model has also been tested using the brain MRI images of another machine to validate its adaptability, general capability, and reliability for real-time application in the future. The results showed that the proposed model has a high accuracy of 96.89% for an unseen brain MRI dataset. Thus, the proposed deep-learning framework can help doctors and radiologists diagnose brain tumors early.

Author(s):  
Hamed Samadi Ghoushchi ◽  
Yaghoub Pourasad

<p>The purpose of this article is to investigate techniques for classifying tumor grade from magnetic resonance imaging (MRI). This requires early diagnosis of the brain tumor and its grade. Magnetic resonance imaging may show a clear tumor in the brain, but doctors need to measure the tumor in order to treat more or to advance treatment. For this purpose, digital imaging techniques along with machine learning can help to quickly identify tumors and also treatments and types of surgery. These combined techniques in understanding medical images for researchers are an important tool to increase the accuracy of diagnosis. In this paper, classification methods for MRI images of tumors of the human brain are performed to review the astrocytoma-containing glands. Methods used to classify brain tumors, including preprocessing, screening, tissue extraction, and statistical features of the tumor using two types of T<sub>1</sub>W and Flair brain MRI images and also the method of dimensionality reduction of extracted features and how to train them in classification are also explained. Determine the tumor area using three classification of Fuzzy Logic <em>C</em><em>-</em><em>Means</em><em> </em>Clustering (FCM), Probabilistic Neural Networks (PNN) and Support Vector Machines (SVM). In this paper, simulated and real MRI images are used. The results obtained from the proposed methods in this paper are compared with the reference results and the results show that the proposed approach can increase the reliability of brain tumor diagnosis.</p>


2018 ◽  
Vol 3 (2) ◽  
pp. 179
Author(s):  
Oscar Adriyanto ◽  
Halim Agung

Brain tumors are the second leading cause of death in the world in children under 20, scientists and researchers are developing applications to react brain tumors based on magnetic resonance imaging images. In this application the method used is sobel and morphological operations. Based on research conducted on brain tumor edge detection based on magnetic resonance imaging image, sobel method can reduce the noise contained in the image mri and can localize the edge of the image of Magnetic Resonance Imaging well. This research can conclude that the sobel method is suitable for edge detection but there is still some unprocessed noise, with the results of the brain imaging of 30 test images have 60% percentage, while for the use of edge detection method of 62.11%.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yuna Chen ◽  
Yongsheng Pan ◽  
Shangyu Kang ◽  
Junshen Lu ◽  
Xin Tan ◽  
...  

Diabetes with high blood glucose levels may damage the brain nerves and thus increase the risk of dementia. Previous studies have shown that dementia can be reflected in altered brain structure, facilitating computer-aided diagnosis of brain diseases based on structural magnetic resonance imaging (MRI). However, type 2 diabetes mellitus (T2DM)-mediated changes in the brain structures have not yet been studied, and only a few studies have focused on the use of brain MRI for automated diagnosis of T2DM. Hence, identifying MRI biomarkers is essential to evaluate the association between changes in brain structure and T2DM as well as cognitive impairment (CI). The present study aims to investigate four methods to extract features from MRI, characterize imaging biomarkers, as well as identify subjects with T2DM and CI.


Sign in / Sign up

Export Citation Format

Share Document