scholarly journals Continuous Cropping Alters Multiple Biotic and Abiotic Indicators of Soil Health

Soil Systems ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 59 ◽  
Author(s):  
Zahida H. Pervaiz ◽  
Javed Iqbal ◽  
Qingming Zhang ◽  
Dima Chen ◽  
Hui Wei ◽  
...  

The continuous cropping (CC) of major agricultural, horticultural, and industrial crops is an established practice worldwide, though it has significant soil health-related concerns. However, a combined review of the effects of CC on soil health indicators, in particular omics ones, remains missing. The CC may negatively impact multiple biotic and abiotic indicators of soil health, fertility, and crop yield. It could potentially alter the soil biotic indicators, which include but are not limited to the composition, abundance, diversity, and functioning of soil micro- and macro-organisms, microbial networks, enzyme activities, and soil food web interactions. Moreover, it could also alter various soil abiotic (physicochemical) properties. For instance, it could increase the accumulation of toxic metabolites, salts, and acids, reduce soil aggregation and alter the composition of soil aggregate-size classes, decrease mineralization, soil organic matter, active carbon, and nutrient contents. All these alterations could accelerate soil degradation. Meanwhile, there is still a great need to develop quantitative ranges in soil health indicators to mechanistically predict the impact of CC on soil health and crop yield gaps. Following ecological principles, we strongly highlight the significance of inter-, mixture-, and rotation-cropping with cover crops to sustain soil health and agricultural production.

Author(s):  
Carolyn B. Marshall ◽  
David L. Burton ◽  
Derek H. Lynch

Production of fruits and vegetables provides nutrient dense and high values crops. However, horticulture production is often very intensive and degrading to soil, with high levels of soil disturbance, high use of fertilizer inputs, and with prolonged periods of exposed soil. This can lead to increased soil degradation when compared to other types of cropping. We used a subset of the Atlantic Soil Health Laboratory’s database of on-farm soil samples collected between 2016-2018 to assess the impact of cover crops (CC) use in horticulture production in Nova Scotia on soil health. We analyzed 21 soil health parameters on soil collected from 14 fields, seven of which incorporated CCs in their crop rotation and seven of which used no CCs. The inclusion of CCs significantly increased permanganate oxidizable carbon, soil respiration, autoclaved-citrate extractable (ACE) protein, residual soil nitrogen, and biologically available nitrogen. However, we also found that the variation in these parameters was greater when CCs were part of the rotation. This is likely attributable to the wide range of CC species used and differences in their management, such as the chosen termination method. While cover cropping is seen as a best management practice to improve soil health simply using a CC in a horticulture rotation does not necessarily lead to improved soil health. Research trials on specific CC species and management to target soil degradation are needed to tailor recommendations to ensure the desired soil health outcomes can be achieved with CC use.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 372
Author(s):  
Lucas Clay ◽  
Katharine Perkins ◽  
Marzieh Motallebi ◽  
Alejandro Plastina ◽  
Bhupinder Singh Farmaha

Cover crops are becoming more accepted as a viable best management practice because of their ability to provide important environmental and soil health benefits. Because of these benefits, many land managers are strongly encouraging the use of cover crops. Additionally, there is limited information on farmers′ perceptions of the benefits and challenges of implementing cover crops. Many farmers state that they do not have enough money or time to implement cover crops. In an attempt to gather more data about the adoption rate and perceptions of cover crops in South Carolina, a survey was sent to 3000 row crop farmers across the state. Farmers were asked whether they implement cover crops and their perceptions of the benefits and challenges associated with implementation. Furthermore, questions were asked regarding the impact of row cropping on their environment to gauge farmer′s education level on environmental impacts. Responses showed many people are implementing cover crops; however, there are still differences in perceptions about benefits and challenges between those who are adopting cover crops and those who are not. This research assesses these differences and aims to provide a baseline for focusing cover crop programs to tackle these certain challenges and promote the benefits.


Soil Systems ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 61
Author(s):  
Mingxin Guo

In the past decade soil health has been intensively studied as a science and practiced as a means to help improve the global social, environmental, and economic sustainability. This paper reviews the recent advances of the scientific soil health system. The current understanding and interpretation of soil health from the perspectives of soil functions, processes, and properties is summarized. Multi-tier soil health indicators were selected from relevant soil physical, chemical, and biological parameters. A suite of soil health assessment methods have been developed, such as soil health card, Solvita soil health tests, Haney soil health test, and comprehensive assessment of soil health. An array of soil health management practices have been recommended, including proper land use, crop rotation, cover crops, conservation tillage, soil organic amendment, crop-range-livestock integration, and rotational grazing. Overall, the recommended soil health indicators and assessment methods need further validation and improvement in relevance, scientific validity, practicality, and local adaptation. Continuous research, education, and outreach efforts are warranted to promote localized development, adoption, and implementation of soil health assessment and management.


2020 ◽  
Author(s):  
Andrew Nicholas Kadykalo ◽  
Kris Johnson ◽  
Scott McFatridge ◽  
C. Scott Findlay

Although agricultural “best (or beneficial) management practices” (BMPs) first emerged to mitigate agro-environmental resource challenges, they may also enhance ‘non-provisioning’ ecosystem services. The enthusiasm for adopting BMPs partially depends on evidence that doing so will lead to agro-environmental benefits while not substantially reducing crop productivity or farmer income. We survey and synthesize evidence in the existing literature to document the joint effects on agricultural crop yield and 12 ecosystem service (ES) associated with implementation of 5 agricultural BMPs (crop rotations, cover crops, nutrient management, perennial vegetated buffers, reduced or no tillage). We also analyze the prevalence of co-benefits (‘win-win’), tradeoffs, and co-costs (‘lose-lose’) outcomes. On the basis of a set of contextual variables we then develop empirical models that predict the likelihood of co-benefits relative to tradeoffs, and co-costs. We found thirty-six studies investigating 141 combinations of crop yields and non-provisioning ES outcomes (YESs) in the relevant literatures covering the period 1983-2016. The scope of the review is global, but included studies are geographically concentrated in the U.S. Corn Belt (Midwestern United States). In the literature sample, reporting of co-benefits (26%) was much more prevalent than reporting of co-costs (4%) between yields and ES. Tradeoffs most often resulted in a reduction in crop yields and an increase in ES (28%); this was marginally greater than studies reporting a neutral influence on crop yields and an increase in ES (26%). Other Y/ES combinations were uncommon. Mixed-effects models indicated reduced tillage and crop rotations had generally positive associations with YESs. Temporal scale was an informative predictor suggesting studies with longer time scales resulted in greater positive outcomes on YESs, on average. Our results are a step towards identifying those contexts where co-benefits or partial improvement outcomes of BMPs are more likely to be realized, as well as the impact of particular practices on specific ES.


2012 ◽  
Vol 92 (3) ◽  
pp. 471-479 ◽  
Author(s):  
T. Huffman ◽  
D. R. Coote ◽  
M. Green

Huffman, T., Coote, D. R. and Green, M. 2012. Twenty-five years of changes in soil cover on Canadian Chernozemic (Mollisol) soils, and the impact on the risk of soil degradation. Can. J. Soil Sci. 92: 471–479. Agricultural soils that are covered by vegetation or crop residue are less susceptible to degradation by wind and water erosion, organic matter depletion, structural degradation and declining fertility. In general, perennial crops, higher yields, reduced tillage and continuous cropping provide more soil cover than annual crops, lower yields, intensive tillage, residue harvesting and fallowing. This study presents a model for estimating the number of days in a year that the soil surface is protected and demonstrates its application on the Canadian prairies over the period from 1981 to 2006. Over the 25-yr study period, the average soil cover on Canadian prairie soils increased by 4.8% overall. The improvement came primarily as a result of widespread adoption of no-till and a decline in the use of summerfallow, but the gains were offset to a great deal by a shift from higher-cover crops such as wheat, oats and barley to more profitable but lower-cover crops such as canola, soybeans and potatoes. The implication of these trends is that, even though protection of prairie agricultural soils has improved over the past 25 yr, soil cover could decline dramatically over the next several decades if crop changes continue, the adoption of conservation tillage reaches a peak and residue harvesting for biofuels becomes more common.


2021 ◽  
Author(s):  
Upendra M. Sainju ◽  
Daniel Liptzin ◽  
Brett L. Allen ◽  
Sadikshya Rana‐Dangi

2021 ◽  
Vol 10 (2) ◽  
pp. 17
Author(s):  
Jehangir H. Bhadha ◽  
Nan Xu ◽  
Abul Rabbany ◽  
Naba R. Amgain ◽  
Jay Capasso ◽  
...  

Conventional cropping systems on sandy soils require continuous application of large amounts of external nutrients and irrigation water yet remain vulnerable to loses of these inputs. Within the state of Florida, need exists to provide farmers with economically viable alternatives that harness ecological processes and improve soil health and biodiversity. Cover crops are proving to be vital in the development of soil health. As part of this study we conducted a comprehensive on-farm assessment involving nine collaborative growers (ten farms) across the state; with each individual farm following its unique cover-cropping practice. Our goal was to shadow their practice and determine its effect on soil health indicators such as soil pH, bulk density (BD), maximum water holding capacity (MWHC), organic matter (OM), active carbon, cation exchange capacity, soil protein, Total Kjeldahl nitrogen (TKN), total phosphorus (TP), Mehlich-3 P (M3P) and potassium (M3K). Compared to fallow, soil OM, MWHC, and soil protein showed increases in cover crop fields for most farms, which presented a positive change towards building up soil health. Although soil TKN level was significantly decreased due to cover crops, soil protein level building up over time was the most positive change for soil health. M3K decreased in cover-crop fields, which indicated that supplementary K would be necessary prior to planting subsequent cash crops.


2020 ◽  
Author(s):  
Achal Neupane ◽  
Izzet Bulbul ◽  
Ziyi Wang ◽  
R. Michael Lehman ◽  
Emerson Nafziger ◽  
...  

Abstract Background Crop rotation is an important management tactic that farmers use to manage crop production and reduce pests and diseases. Long-term crop rotations may select groups of microbes that form beneficial or pathogenic associations with the following crops, which could explain observed crop yield differences with different crop sequences. To test this hypothesis, we used two locations each with three long-term (14 year), replicated, crop rotation treatments: continuous corn ( Zea mays ) (CCC), corn/corn/soybean (SCC), and corn/soybean (CSC); both CSC and SCC had each phase present each year. In Year 15, we grew soybean ( Glycine max ) in each plot, so that soybean replaced corn in CCC and in the CSC phase where soybean grew in Year 14, and took data from soybeans following CCC (14 years of corn), SCC (two years of corn), CSC (one year of corn), and SCS (one year of soybean). Soybean yield and soil health indicators were measured, along with the bulk soil microbiome and soybean root-associated microbiome.Results Soybean yields were significantly higher following CCC than in the other three treatments at both locations. Soil protein as a soil health indicator was also higher following CCC than in the other treatments. Differential abundances of bacterial and fungal taxa were related to yield differences in a site-specific manner. Uncultured bacterial taxa in family JG30-KF-AS9 was enriched in the high-yielding CCC plots in Monmouth, whereas Microvirga , Rhodomicrobium , and Micromonosporaceae were enriched in the low-yielding SCS plots. Members of the fungal phylum Ascomycota were informative in explaining yield differences among treatments mostly as pathogens, but Tumularia , Pyrenochaetopsis and Schizothecium were enriched in the CCC plots, suggesting a role as either corn pathogens or beneficial fungal taxa for soybean. Multivariate analysis associated soil health indicators with the rotation regimes and some of the differentially abundant microbial taxa.Conclusions Our finding of associations between soil health indicators related to soil microbial populations and soybean yield following different cropping sequences has wide-ranging implications, opening the possibility of both monitoring and manipulating soil microbial populations as a way to improve crop yield potential.


2021 ◽  
Vol 41 (6) ◽  
Author(s):  
Aurelio Scavo ◽  
Alessia Restuccia ◽  
Cristina Abbate ◽  
Sara Lombardo ◽  
Stefania Fontanazza ◽  
...  

AbstractThe soils of Mediterranean semiarid environments are commonly characterized by low levels of organic matter and mineral elements, as well as severe weed infestations, which, taken together, cause an intensive use of auxiliary inputs (tillage, fertilizers, herbicides). Although cover crops are recognized to sustainably improve soil health, the impact of Trifolium subterraneum L. cover cropping needs specific attention. This research investigates for the first time the effects over 4 years of T. subterraneum and spontaneous flora cover crops, after either incorporating their dead mulches into the soil or leaving them on the soil surface, on soil organic matter (SOM), macroelements, mineral nitrogen, microelements, and weed seedbank dynamics as indicators of soil quality in an apricot orchard. Compared to a conventional management control, the T. subterraneum cover crop with the burying of dead mulch into the soil increased the amount of SOM (+ 15%), ammoniacal (+ 194%) and nitric (+ 308%) nitrogen, assimilable P2O5 (+ 5%), exchangeable K2O (+ 14%), exchangeable Na (+ 32%), exchangeable K (+ 16%), Fe (+ 15%), Mn (+ 28%), Zn (+ 36%), and Cu (+ 24%), while it decreased the weed seedbank size (‒ 54%) and enhanced weed biodiversity. These findings suggest that T. subterraneum cover cropping may be an environment-friendly tool to enhance soil quality and limit auxiliary input supply in Mediterranean orchards.


2021 ◽  
Vol 3 ◽  
Author(s):  
Uriel D. Menalled ◽  
Sarah J. Pethybridge ◽  
Chris J. Pelzer ◽  
Richard G. Smith ◽  
Antonio DiTommaso ◽  
...  

No-till planting crops into rolled-crimped cover crops can improve soil health while reducing labor and fuel requirements compared with traditional tillage-based production. However, little information is available to help farmers optimize the management of organic no-till planted crops. Weed suppression, crop yield, and profitability were assessed across soybean [Glycine max (L.) Merr.] seeding rates and soil nitrogen environments in an experiment conducted at two sites in central New York. Soybeans were no-till planted into rolled-crimped cereal rye (Secale cereale L.) at 0, 185,000, 371,000, 556,000, and 741,000 seeds ha−1. Three rates (0, 63, or 125 kg ha−1) of sodium nitrate (15-0-2) were applied across seeding rates to create different soil nitrogen environments. When pooled over sites, the lowest weed biomass occurred at the highest soybean density in the lowest soil nitrogen environment. An interaction was observed between soybean seeding rate and nitrogen treatments on weed communities. Soybean yield increased asymptotically with crop density and was not affected by nitrogen or site treatments. When pooled over nitrogen treatments and sites, partial returns to the soybean seeding rates were maximized at $2,238 ha−1 with 527,800 seeds ha−1. Results suggest that crop density is an important lever for optimizing weed suppression and crop yield in organic no-till soybean, and that managing for low soil nitrogen conditions may further enhance weed suppression while maintaining high yields.


Sign in / Sign up

Export Citation Format

Share Document