scholarly journals Soil Health Assessment and Management: Recent Development in Science and Practices

Soil Systems ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 61
Author(s):  
Mingxin Guo

In the past decade soil health has been intensively studied as a science and practiced as a means to help improve the global social, environmental, and economic sustainability. This paper reviews the recent advances of the scientific soil health system. The current understanding and interpretation of soil health from the perspectives of soil functions, processes, and properties is summarized. Multi-tier soil health indicators were selected from relevant soil physical, chemical, and biological parameters. A suite of soil health assessment methods have been developed, such as soil health card, Solvita soil health tests, Haney soil health test, and comprehensive assessment of soil health. An array of soil health management practices have been recommended, including proper land use, crop rotation, cover crops, conservation tillage, soil organic amendment, crop-range-livestock integration, and rotational grazing. Overall, the recommended soil health indicators and assessment methods need further validation and improvement in relevance, scientific validity, practicality, and local adaptation. Continuous research, education, and outreach efforts are warranted to promote localized development, adoption, and implementation of soil health assessment and management.

2019 ◽  
Vol 1 (3) ◽  
pp. 15-26 ◽  
Author(s):  
Raj Gupta ◽  
RN Sahoo ◽  
Inder Abrol

Nutrient depletion and imbalanced use of fertiliser nutrients, inappropriate tillage and rain- water management practices often result in land degradation. Declining soil health contributes to climate change through loss in soil productivity, biodiversity, soil carbon, and moisture and ecosystem services. In order to address declining soil health, government of India has launched a soil health card (SHC) scheme aimed at need base use of chemical fertilisers. The paper points out the short-comings in the SHC scheme. Balanced and need base use of chemical fertilizers can be helpful in environmental protection and restoring soil health. The paper identifies potential agronomic practices and production management systems that can reduce our dependence on synthetic nutrients. Integration of soil fertility management domains with computer based QUEFT crop model has the potential of making fertiliser recommendations more domain and crop specific and less cumbersome. For soil health assessment chemical indicators must be integrated with physical and biological properties of the soils which can be predicted through reflectance spectroscopy. For assessing soil health related issues across different agro-ecoregions, there is however an urgent need for building-up more robust soil reflectance libraries.


2020 ◽  
Vol 12 (5) ◽  
pp. 2071 ◽  
Author(s):  
Márcio R. Nunes ◽  
Douglas L. Karlen ◽  
Thomas B. Moorman

Tillage intensity affects soil structure in many ways but the magnitude and type (+/−) of change depends on site-specific (e.g., soil type) and experimental details (crop rotation, study length, sampling depth, etc.). This meta-analysis examines published effects of chisel plowing (CP), no-tillage (NT) and perennial cropping systems (PER) relative to moldboard plowing (MP) on three soil structure indicators: wet aggregate stability (AS), bulk density (BD) and soil penetration resistance (PR). The data represents four depth increments (from 0 to >40-cm) in 295 studies from throughout the continental U.S. Overall, converting from MP to CP did not affect those soil structure indicators but reducing tillage intensity from MP to NT increased AS in the surface (<15-cm) and slightly decreased BD and PR below 25-cm. The largest positive effect of NT on AS was observed within Inceptisols and Entisols after a minimum of three years. Compared to MP, NT had a minimal effect on soil compaction indicators (BD and PR) but as expected, converting from MP to PER systems improved soil structure at all soil depths (0 to >40-cm). Among those three soil structure indicators, AS was the most sensitive to management practices; thus, it should be used as a physical indicator for overall soil health assessment. In addition, based on this national meta-analysis, we conclude that reducing tillage intensity improves soil structure, thus offering producers assurance those practices are feasible for crop production and that they will also help sustain soil resources.


Author(s):  
N. Dhivya ◽  
R. Rajasekaran ◽  
T. Dhamodaran ◽  
R. Pangayar Selvi

Aims: Soil structural deterioration and degradation is a major concern in the present-day agriculture scenario. Poor soil health directly affects the health of the plant and its productivity; indirectly the health of human beings as well as animals. So, scientific knowledge of soil management on the part of the farmer-producers is necessary. So, the main aim of the study is to identify the knowledge level on soil health management among the soil health card holders. Study Design:  Ex-post facto research. Place and Duration of Study: The study was carried out in the Namakkal district of Tamilnadu during the months of July-August 2021. All the selected respondents were the holders of soil health card as it contains physical and chemical characteristics of soil, they have a working knowledge of research problem and were able to provide responses. Methodology: Data were collected by using a pre-tested and structured questionnaire through a face-to-face interview method. The sample size is 120 selected from four blocks of Namakkal district. The statistical analysis applied were frequency distribution, percentage analysis, mean, and standard deviation. Results: The study shows that more than half of the soil health card holders (55.83 percent) had an overall high level of knowledge about soil health management practices. Conclusion: The soil health card scheme was brought to bring improvement of soil health in the long run by farmers all over the country. Thus, the knowledge of soil health management practices including modern technology can be disseminated to a greater extent for the benefit of the farmers including non-holders of soil health cards through formal and informal meetings and training.


2013 ◽  
Vol 120 (1-4) ◽  
pp. 1-13
Author(s):  
D. L. KARLEN ◽  
C. D. NANCE ◽  
D. L. DINNES ◽  
D. W. MEEK

The Soil Management Assessment Framework (SMAF) was developed to help quantify soil quality/health effects of tillage, crop rotation, and other soil management practices. Our objective was to determine if the SMAF could detect soil health differences after growing a single winter triticale (X Triticosecale Wittmack) crop. Soil samples were collected from 0 to 7.5- and 7.5 to 15-cm depth increments during the 2003 – 2004 and 2004 – 2005 growing seasons near Ames and Lewis, IA, and analyzed for several potential soil quality indicators. The SMAF analysis showed higher soil quality ratings for surface than subsurface samples. It also showed that a single winter grain crop can significantly improve soil quality after either corn (Zea mays L.) or soybean (Glycine max [L.] Merr.). Finally, in response to increasing interest in soil health assessments, a detailed appendix is attached to provide guidance for future soil health assessments.


2020 ◽  
Vol 12 (12) ◽  
pp. 4859 ◽  
Author(s):  
Monther M. Tahat ◽  
Kholoud M. Alananbeh ◽  
Yahia A. Othman ◽  
Daniel I. Leskovar

A healthy soil acts as a dynamic living system that delivers multiple ecosystem services, such as sustaining water quality and plant productivity, controlling soil nutrient recycling decomposition, and removing greenhouse gases from the atmosphere. Soil health is closely associated with sustainable agriculture, because soil microorganism diversity and activity are the main components of soil health. Agricultural sustainability is defined as the ability of a crop production system to continuously produce food without environmental degradation. Arbuscular mycorrhizal fungi (AMF), cyanobacteria, and beneficial nematodes enhance water use efficiency and nutrient availability to plants, phytohormones production, soil nutrient cycling, and plant resistance to environmental stresses. Farming practices have shown that organic farming and tillage improve soil health by increasing the abundance, diversity, and activity of microorganisms. Conservation tillage can potentially increase grower’s profitability by reducing inputs and labor costs as compared to conventional tillage while organic farming might add extra management costs due to high labor demands for weeding and pest control, and for fertilizer inputs (particularly N-based), which typically have less consistent uniformity and stability than synthetic fertilizers. This review will discuss the external factors controlling the abundance of rhizosphere microbiota and the impact of crop management practices on soil health and their role in sustainable crop production.


Author(s):  
Carolyn B. Marshall ◽  
David L. Burton ◽  
Derek H. Lynch

Production of fruits and vegetables provides nutrient dense and high values crops. However, horticulture production is often very intensive and degrading to soil, with high levels of soil disturbance, high use of fertilizer inputs, and with prolonged periods of exposed soil. This can lead to increased soil degradation when compared to other types of cropping. We used a subset of the Atlantic Soil Health Laboratory’s database of on-farm soil samples collected between 2016-2018 to assess the impact of cover crops (CC) use in horticulture production in Nova Scotia on soil health. We analyzed 21 soil health parameters on soil collected from 14 fields, seven of which incorporated CCs in their crop rotation and seven of which used no CCs. The inclusion of CCs significantly increased permanganate oxidizable carbon, soil respiration, autoclaved-citrate extractable (ACE) protein, residual soil nitrogen, and biologically available nitrogen. However, we also found that the variation in these parameters was greater when CCs were part of the rotation. This is likely attributable to the wide range of CC species used and differences in their management, such as the chosen termination method. While cover cropping is seen as a best management practice to improve soil health simply using a CC in a horticulture rotation does not necessarily lead to improved soil health. Research trials on specific CC species and management to target soil degradation are needed to tailor recommendations to ensure the desired soil health outcomes can be achieved with CC use.


Author(s):  
P. Padmavathi ◽  
I. Y.L.N Murthy ◽  
M. Suresh

A field experiment was conducted to study the effect of nutrient management practices on the performance of soybean - safflower sequence in Vertisols. The safflower equivalent yield (2418 kg/ha-1); gross returns (Rs. 53196/ha-1); net returns (Rs 33734/ha-1) and B:C ratio (2.8) were significantly superior either with the application of NPK to the system + 5 t FYM/ha to safflower; or NPK to the system + soybean residues to safflower; or NPK to the system + both crop residues. Similar trend was also observed with respect to soil health indicators viz., soil respiration (108 mg C/g soil/10 days), microbial biomass C (284 mg C/g soil), microbial biomass N (41.9 mg N/g soil), mineral N (13.8 mg N/g soil) and net N mineralization (5.4 mg N/g soil/ 10 days). Significant improvement was observed in terms of PGPR and Trichoderma sp were found when NPK + crop residues were applied to the system.


2020 ◽  
Vol 8 (11) ◽  
pp. 1773
Author(s):  
Nakian Kim ◽  
María C. Zabaloy ◽  
Chance W. Riggins ◽  
Sandra Rodríguez-Zas ◽  
María B. Villamil

Metagenomics in agricultural research allows for searching for bioindicators of soil health to characterize changes caused by management practices. Cover cropping (CC) improves soil health by mitigating nutrient losses, yet the benefits depend on the tillage system used. Field studies searching for indicator taxa within these systems are scarce and narrow in their scope. Our goal was to identify bioindicators of soil health from microbes that were responsive to CC (three levels) and tillage (chisel tillage, no-till) treatments after five years under field conditions. We used rRNA gene-based analysis via Illumina HiSeq2500 technology with QIIME 2.0 processing to characterize the microbial communities. Our results indicated that CC and tillage differentially changed the relative abundances (RAs) of the copiotrophic and oligotrophic guilds. Corn–soybean rotations with legume–grass CC increased the RA of copiotrophic decomposers more than rotations with grass CC, whereas rotations with only bare fallows favored stress-tolerant oligotrophs, including nitrifiers and denitrifiers. Unlike bacteria, fewer indicator fungi and archaea were detected; fungi were poorly identified, and their responses were inconsistent, while the archaea RA increased under bare fallow treatments. This is primary information that allows for understanding the potential for managing the soil community compositions using cover crops to reduce nutrient losses to the environment.


2021 ◽  
Vol 13 (9) ◽  
pp. 4844
Author(s):  
Subash Dahal ◽  
Dorcas H. Franklin ◽  
Anish Subedi ◽  
Miguel L. Cabrera ◽  
Laura Ney ◽  
...  

The study of interrelationships among soil health indicators is important for (i) achieving better understanding of nutrient cycling, (ii) making soil health assessment cost-effective by eliminating redundant indicators, and (iii) improving nitrogen (N) fertilizer recommendation models. The objectives of this study were to (i) decipher complex interrelationships of selected chemical, physical, and biological soil health indicators in pastures with history of inorganic or broiler litter fertilization, and (ii) establish associations among inorganic N, potentially mineralizable N (PMN), and soil microbial biomass (SMBC), and other soil health indicators. In situ soil respiration was measured and soil samples were collected from six beef farms in 2017 and 2018 to measure selected soil health indicators. We were able to establish associations between easy-to-measure active carbon (POXC) vs. PMN (R2 = 0.52), and N (R2 = 0.43). POXC had a noteworthy quadratic relationship with N and nitrate, where we found dramatic increase of N and nitrate beyond an inflection point of 500 mg kg−1 POXC. This point may serve as threshold for soil health assessment. The relationships of loss-on-ignition (LOI) carbon with other soil health indicators were discernable between inorganic- and broiler litter-fertilized pastures. We were able to establish association of SMBC with other soil variables (R2 = 0.76) and there was detectable difference in SMBC between inorganic-fertilized and broiler litter-fertilized pastures. These results could be useful for cost-effective soil health assessment and optimization of N fertilizer recommendation models to improve N use efficiency and grazing system sustainability.


2018 ◽  
Author(s):  
Jayalakshmi Mitnala

The soil health card (SHC) is used to assess the current status of soil health and when usedover time, helps to determine changes in soil health that are affected by land management. ASHC displays soil health indicators and associated descriptive terms. The SHC carries cropwiserecommendations of nutrients / fertilizers required for farms, making it possible forfarmers to improve productivity by using appropriate inputs. The Central Government isproviding assistance to State Governments for setting up soil testing laboratories for issuingsuch SHCs to farmers. State Governments have adopted innovative practices like involvementof agricultural students, NGOs and private sector in soil testing, determining average soilhealth of villages, etc., to issue SHCs. Though quite a few states including Tamil Nadu,Gujarat, Andhra Pradesh and Haryana are successfully distributing such cards, the Centreplans to make it a pan India effort. According to a data, till November 15th 2017, over 9.72 croresoil health cards have been issued to farmers to make them aware about nutrient deficienciesin their fields.


Sign in / Sign up

Export Citation Format

Share Document