scholarly journals Acute Effect of Quadriceps Myofascial Tissue Rolling Using A Mechanical Self-Myofascial Release Roller-Massager on Performance and Recovery in Young Elite Speed Skaters

Sports ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 246
Author(s):  
Shaher A. I. Shalfawi ◽  
Eystein Enoksen ◽  
Håvard Myklebust

Objectives: The main purpose of the present study was to investigate the acute effects of myofascial tissue rolling on endurance performance and recovery using a novel designed mechanical self-induced multi-bar roller-massager. Methods: a randomized crossover, repeated measure design was used. Eight national levelled, junior and neo-senior, speed skaters underwent a 10 min myofascial quadriceps rolling pre- and fifteen minutes post- a stepwise incremental cycling-test to exhaustion followed by a Wingate performance-test. The myofascial quadriceps rolling was used in one out of two laboratory testing-days. Time to exhaustion, peak oxygen uptake (VO2peak), blood lactate concentration during 30 min of recovery, and peak- and mean- power during the consecutive Wingate test were recorded. Results: Myofascial quadriceps rolling using roller-massager resulted in higher blood lactate concentration at exhaustion and a larger blood lactate clearance after 10 min to post exhaustion test (both p < 0.05), a tendency for a positive effect on Wingate peak-power (p = 0.084; d = 0.71), whereas no marked differences were observed on VO2peak, time to exhaustion and Wingate mean-power. Conclusion: Despite indications for potential benefits of the quadriceps myofascial tissue release using the mechanical self-induced multi-bar roller-massager on blood lactate concentration and Wingate peak-power, the myofascial tissue release gave no marked performance improvements nor indications of negative effects. Future studies could examine the long-term effects of myofascial tissue release on performance and recovery. Furthermore, integrating a measure of the participants’ subjective experience pre- and post the myofascial tissue release would be of great interest.

2011 ◽  
Vol 6 (3) ◽  
pp. 419-426 ◽  
Author(s):  
Dale I. Lovell ◽  
Dale Mason ◽  
Elias Delphinus ◽  
Chris McLellan

Purpose:The aim of this study was to compare asynchronous (AS Y) arm cranking (cranks at 180° relative to each other) with synchronous (SYN) arm cranking (parallel crank setting) during the 30 s Wingate anaerobic test.Methods:Thirty-two physically active men (aged 22.1 ± 2.4 y) completed two Wingate tests (one ASY and one SYN) separated by 4 d in a randomized counterbalanced order. The Wingate tests were completed on a modified electromagnetically braked cycle ergometer. Performance measures assessed during the two tests include peak power, mean power, minimum power, time to peak power, rate to fatigue and maximum cadence (RPMmax). Blood lactate concentration was also measured before and 5 min after the tests.Results:Peak and mean power (both absolute and relative to body weight) during SYN arm cranking were significantly (p < 0.001) less than during ASY arm cranking. Rate to fatigue and RPMmax were also significantly (p = 0.012) lower during SYN arm cranking compared with ASY arm cranking. No significant difference was found between test conditions for minimum power, time to peak power or blood lactate concentration.Conclusions:These findings demonstrate that ASY arm cranking results in higher peak and mean anaerobic power compared with SYN arm cranking during the Wingate test. Therefore, an ASY arm crank configuration should be used to assess anaerobic power in most individuals although specific population groups may require further testing to determine which crank configuration is most suitable for the Wingate test.


1997 ◽  
Vol 9 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Michael Chia ◽  
Neil Armstrong ◽  
David Childs

Twenty-five girls and 25 boys (mean age 9.7 ± 0.3 years) each completed a 20- and 30-s Wingate Anaerobic Test (WAnT). Oxygen uptake during the WAnTs, and postexercise blood lactate samples were obtained. Inertia and load-adjusted power variables were higher (18.6–20.1% for peak, and 6.7–7.5% for mean power outputs, p < .05) than the unadjusted values for both the 20- and 30-s WAnTs. The adjusted peak power values were higher (7.7–11.6%, p < .05) in both WAnTs when integrated over 1-s than over 5-s time periods. The aerobic contributions to the tests were lower (p < .05) in the 20-s WAnT (13.7–35.7%) than in the 30-s WAnT (17.7–44.3%) for assumed mechanical efficiencies of 13% and 30%. Postexercise blood lactate concentration after the WAnTs peaked by 2 min. No gender differences (p > .05) in anaerobic performances or peak blood lactate values were detected.


2013 ◽  
Vol 23 (6) ◽  
pp. 601-609 ◽  
Author(s):  
Martin Aedma ◽  
Saima Timpmann ◽  
Vahur Ööpik

Purpose:Peak power (PP) and mean power (MP) attained in upper body sprint performance test are considered important factors for competitive success in wrestling. This study aimed to determine whether acute caffeine ingestion would better maintain PP and MP across a simulated competition day in wrestling.Methods:In a double-blind, counterbalanced, crossover study, 14 trained wrestlers ingested either placebo or 5 mg/kg caffeine and completed four 6-min upper body intermittent sprint performance tests with 30-min recovery periods between consecutive tests. PP and MP were recorded during and blood lactate concentration was measured before and after each test. Ratings of perceived fatigue (RPF) and exertion (RPE) were recorded before and after each test, respectively. Heart rate (HR) was monitored across the whole testing period.Results:Mean power decreased across four tests in both trials (p < .05), but the reduction in PP (from 277.2 ± 34.6 W to 257.3 ± 45.1 W; p < .05) only occurred in caffeine trial. Both pretest blood lactate concentration and HR were higher in caffeine than in placebo trial (p < .05) in the third and fourth tests. No between-trial differences occurred in RPF or RPE.Conclusions:Under simulated competition day conditions mimicking four consecutive wrestling matches, acute caffeine ingestion has a partially detrimental effect on upper body intermittent sprint performance in trained wrestlers. Elevated HR and blood lactate levels observed between tests after caffeine ingestion suggest that caffeine may impair recovery between consecutive maximal efforts.


Sports ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Jeffrey Rothschild ◽  
George H. Crocker

The purpose of this study was to examine the effects of a 2-km swim on markers of subsequent cycling performance in well-trained, age-group triathletes. Fifteen participants (10 males, five females, 38.3 ± 8.4 years) performed two progressive cycling tests between two and ten days apart, one of which was immediately following a 2-km swim (33.7 ± 4.1 min). Cycling power at 4-mM blood lactate concentration decreased after swimming by an average of 3.8% (p = 0.03, 95% CI −7.7, 0.2%), while heart rate during submaximal cycling (220 W for males, 150 W for females) increased by an average of 4.0% (p = 0.02, 95% CI 1.7, 9.7%), compared to cycling without prior swimming. Maximal oxygen consumption decreased by an average of 4.0% (p = 0.01, 95% CI −6.5, −1.4%), and peak power decreased by an average of 4.5% (p < 0.01, 95% CI −7.3, −2.3%) after swimming, compared to cycling without prior swimming. Results from this study suggest that markers of submaximal and maximal cycling are impaired following a 2-km swim.


2020 ◽  
Vol 15 (8) ◽  
pp. 1109-1116
Author(s):  
Mathias T. Vangsoe ◽  
Jonas K. Nielsen ◽  
Carl D. Paton

Purpose: Ischemic preconditioning (IPC) and postactivation potentiation (PAP) are warm-up strategies proposed to improve high-intensity sporting performance. However, only few studies have investigated the benefits of these strategies compared with an appropriate control (CON) or an athlete-selected (SELF) warm-up protocol. Therefore, this study examined the effects of 4 different warm-up routines on 1-km time-trial (TT) performance with competitive cyclists. Methods: In a randomized crossover study, 12 well-trained cyclists (age 32 [10] y, mass 77.7 [4.6] kg, peak power output 1141 [61] W) performed 4 different warm-up strategies—(CON) 17 minutes CON only, (SELF) a self-determined warm-up, (IPC) IPC + CON, or (PAP) CON + PAP—prior to completing a maximal-effort 1-km TT. Performance time and power, quadriceps electromyograms, muscle oxygen saturation (SmO2), and blood lactate were measured to determine differences between trials. Results: There were no significant differences (P > .05) in 1-km performance time between CON (76.9 [5.2] s), SELF (77.3 [6.0] s), IPC (77.0 [5.5] s), or PAP (77.3 [5.9] s) protocols. Furthermore, there were no significant differences in mean or peak power output between trials. Finally, electromyogram activity, SmO2, and recovery blood lactate concentration were not different between conditions. Conclusions: Adding IPC or PAP protocols to a short CON warm-up appears to provide no additional benefit to 1-km TT performance with well-trained cyclists and is therefore not recommended. Furthermore, additional IPC and PAP protocols had no effect on electromyograms and SmO2 values during the TT or peak lactate concentration during recovery.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 778 ◽  
Author(s):  
Małgorzata Michalczyk ◽  
Jakub Chycki ◽  
Adam Zajac ◽  
Adam Maszczyk ◽  
Grzegorz Zydek ◽  
...  

Despite increasing interest among athletes and scientists on the influence of different dietary interventions on sport performance, the association between a low-carbohydrate, high-fat diet and anaerobic capacity has not been studied extensively. The aim of this study was to evaluate the effects of a low-carbohydrate diet (LCD) followed by seven days of carbohydrate loading (Carbo-L) on anaerobic performance in male basketball players. Fifteen competitive basketball players took part in the experiment. They performed the Wingate test on three occasions: after the conventional diet (CD), following 4 weeks of the LCD, and after the weekly Carbo-L, to evaluate changes in peak power (PP), total work (TW), time to peak power (TTP), blood lactate concentration (LA), blood pH, and bicarbonate (HCO3−). Additionally, the concentrations of testosterone, growth hormone, cortisol, and insulin were measured after each dietary intervention. The low-carbohydrate diet procedure significantly decreased total work, resting values of pH, and blood lactate concentration. After the low-carbohydrate diet, testosterone and growth hormone concentrations increased, while the level of insulin decreased. After the Carbo-L, total work, resting values of pH, bicarbonate, and lactate increased significantly compared with the results obtained after the low-carbohydrate diet. Significant differences after the low-carbohydrate diet and Carbo-L procedures, in values of blood lactate concentration, pH, and bicarbonate, between baseline and post exercise values were also observed. Four weeks of the low-carbohydrate diet decreased total work capacity, which returned to baseline values after the carbohydrate loading procedure. Moreover, neither the low-carbohydrate feeding nor carbohydrate loading affected peak power.


Author(s):  
Kamil Michalik ◽  
Kuba Korta ◽  
Natalia Danek ◽  
Marcin Smolarek ◽  
Marek Zatoń

Background: The linearly increased loading (RAMP) incremental test is a method commonly used to evaluate physical performance in a laboratory, but the best-designed protocol remains unknown. The aim of this study was to compare the selected variables used in training control resulting from the two different intensities of RAMP incremental tests. Methods: Twenty healthy and physically active men took part in this experiment. The tests included two visits to a laboratory, during which anthropometric measurements, incremental test on a cycle ergometer, and examinations of heart rate and blood lactate concentration were made. The cross-over study design method was used. The subjects underwent a randomly selected RAMP test with incremental load: 0.278 W·s−1 or 0.556 W·s−1. They performed the second test a week later. Results: Peak power output was significantly higher by 51.69 W (p < 0.001; t = 13.10; ES = 1.13) in the 0.556 W·s−1 group. Total work done was significantly higher in the 0.278 W·s−1 group by 71.93 kJ (p < 0.001; t = 12.55; ES = 1.57). Maximal heart rate was significantly higher in the 0.278 W·s−1 group by 3.30 bpm (p < 0.01; t = 3.72; ES = 0.48). There were no statistically significant differences in heart rate recovery and peak blood lactate. Conclusions: We recommend use of the 0.556 W·s−1 RAMP protocol because it is of shorter duration compared with 0.278 W·s−1 and as such practically easier and of less effort for subjects.


2007 ◽  
Vol 17 (2) ◽  
pp. 206-217 ◽  
Author(s):  
Guilherme Giannini Artioli ◽  
Bruno Gualano ◽  
Desiré Ferreira Coelho ◽  
Fabiana Braga Benatti ◽  
Alessandra Whyte Gailey ◽  
...  

The aim of the present study was to investigate whether pre exercise sodium-bicarbonate ingestion improves judo-related performance. The study used 2 different protocols to evaluate performance: 3 bouts of a specific judo test (n = 9) and 4 bouts of the Wingate test for upper limbs (n = 14). In both protocols athletes ingested 0.3 g/kg of sodium bicarbonate or placebo 2 h before the tests. Blood samples were collected to determine lactate level, and levels of perceived exertion were measured throughout the trials. The study used a double-blind, counterbalanced, crossover design. Ingestion of sodium bicarbonate improved performance in Bouts 2 and 3 of Protocol 1 (P < 0.05), mean power in Bouts 3 and 4 of Protocol 2 (P < 0.05), and peak power in Bout 4 of Protocol 2 (P < 0.05). Ingestion of bicarbonate increased lactate concentration in Protocol 1 (P < 0.05) but not in Protocol 2. Ratings of perceived exertion did not differ between treatments. In conclusion, sodium bicarbonate improves judo-related performance and increases blood lactate concentration but has no effect on perceived exertion.


2016 ◽  
Vol 41 (11) ◽  
pp. 1197-1203 ◽  
Author(s):  
Felipe Mattioni Maturana ◽  
Daniel A. Keir ◽  
Kaitlin M. McLay ◽  
Juan M. Murias

Critical power (CP) conceptually represents the highest power output (PO) at physiological steady-state. In cycling exercise, CP is traditionally derived from the hyperbolic relationship of ∼5 time-to-exhaustion trials (TTE) (CPHYP). Recently, a 3-min all-out test (CP3MIN) has been proposed for estimation of CP as well the maximal lactate steady-state (MLSS). The aim of this study was to compare the POs derived from CPHYP, CP3MIN, and MLSS, and the oxygen uptake and blood lactate concentrations at MLSS. Thirteen healthy young subjects (age, 26 ± 3years; mass, 69.0 ± 9.2 kg; height, 174 ± 10 cm; maximal oxygen uptake, 60.4 ± 5.9 mL·kg−1·min−1) were tested. CPHYP was estimated from 5 TTE. CP3MIN was calculated as the mean PO during the last 30 s of a 3-min all-out test. MLSS was the highest PO during a 30-min ride where the variation in blood lactate concentration was ≤ 1.0 mmol·L−1 during the last 20 min. PO at MLSS (233 ± 41 W; coefficient of variation (CoV), 18%) was lower than CPHYP (253 ± 44 W; CoV, 17%) and CP3MIN (250 ± 51 W; CoV, 20%) (p < 0.05). Limits of agreement (LOA) from Bland–Altman plots between CPHYP and CP3MIN (–39 to 31 W), and CP3MIN and MLSS (–29 to 62 W) were wide, whereas CPHYP and MLSS presented the narrowest LOA (–7 to 48 W). MLSS yielded not only the maximum PO of stable blood lactate concentration, but also stable oxygen uptake. In conclusion, POs associated to CPHYP and CP3MIN were larger than those observed during MLSS rides. Although CPHYP and CP3MIN were not different, the wide LOA between these 2 tests and the discrepancy with PO at MLSS questions the ability of CP measures to determine the maximal physiological steady-state.


2014 ◽  
Vol 40 (1) ◽  
pp. 161-169 ◽  
Author(s):  
Felipe A. S. Lopes ◽  
Valéria L. G. Panissa ◽  
Ursula F. Julio ◽  
Elton M. Menegon ◽  
Emerson Franchini

Abstract The objective of this study was to verify the effect of active and passive recovery on blood lactate concentration and power performance. Twelve male subjects were submitted to a maximal strength test in the the bench press, a maximal aerobic test in the bench step, and to four sets of bench press exercise performed as fast and as long as possible, using 80% of maximal strength when active or passive recovery was performed. The maximum number of repetitions, mean and peak power in eccentric and concentric phases were computed and blood lactate concentration was measured. Comparisons for the variables were made using a two-way variance analysis (recovery type and set numer) with repeated measures in the second factor. When significant differences were detected (p < 0.05), a Tukey post-hoc test was used. There was a main effect of set number on maximum number of repetitions (p < 0.05) (1 > 2, 3, and 4; 2 > 3 and 4; 3 > 4). Mean and peak power in both eccentric and concentric phases also differed across sets (1 > 2, 3, and 4; 2 > 4). There was also a main effect for the recovery type, with lower values (p < 0.05) observed for the active recovery compared to the passive one. It can be concluded that active recovery resulted in lower lactate concentration, but did not improve power performance in the bench press exercise.


Sign in / Sign up

Export Citation Format

Share Document