scholarly journals Bayesian Bandwidths in Semiparametric Modelling for Nonnegative Orthant Data with Diagnostics

Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 162-183
Author(s):  
Célestin C. Kokonendji ◽  
Sobom M. Somé

Multivariate nonnegative orthant data are real vectors bounded to the left by the null vector, and they can be continuous, discrete or mixed. We first review the recent relative variability indexes for multivariate nonnegative continuous and count distributions. As a prelude, the classification of two comparable distributions having the same mean vector is done through under-, equi- and over-variability with respect to the reference distribution. Multivariate associated kernel estimators are then reviewed with new proposals that can accommodate any nonnegative orthant dataset. We focus on bandwidth matrix selections by adaptive and local Bayesian methods for semicontinuous and counting supports, respectively. We finally introduce a flexible semiparametric approach for estimating all these distributions on nonnegative supports. The corresponding estimator is directed by a given parametric part, and a nonparametric part which is a weight function to be estimated through multivariate associated kernels. A diagnostic model is also discussed to make an appropriate choice between the parametric, semiparametric and nonparametric approaches. The retention of pure nonparametric means the inconvenience of parametric part used in the modelization. Multivariate real data examples in semicontinuous setup as reliability are gradually considered to illustrate the proposed approach. Concluding remarks are made for extension to other multiple functions.

Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


2019 ◽  
pp. 1-13
Author(s):  
Luz Judith Rodríguez-Esparza ◽  
Diana Barraza-Barraza ◽  
Jesús Salazar-Ibarra ◽  
Rafael Gerardo Vargas-Pasaye

Objectives: To identify early suicide risk signs on depressive subjects, so that specialized care can be provided. Various studies have focused on studying expressions on social networks, where users pour their emotions, to determine if they show signs of depression or not. However, they have neglected the quantification of the risk of committing suicide. Therefore, this article proposes a new index for identifying suicide risk in Mexico. Methodology: The proposal index is constructed through opinion mining using Twitter and the Analytic Hierarchy Process. Contribution: Using R statistical package, a study is presented considering real data, making a classification of people according to the obtained index and using information from psychologists. The proposed methodology represents an innovative prevention alternative for suicide.


Author(s):  
Saheb Foroutaifar

AbstractThe main objectives of this study were to compare the prediction accuracy of different Bayesian methods for traits with a wide range of genetic architecture using simulation and real data and to assess the sensitivity of these methods to the violation of their assumptions. For the simulation study, different scenarios were implemented based on two traits with low or high heritability and different numbers of QTL and the distribution of their effects. For real data analysis, a German Holstein dataset for milk fat percentage, milk yield, and somatic cell score was used. The simulation results showed that, with the exception of the Bayes R, the other methods were sensitive to changes in the number of QTLs and distribution of QTL effects. Having a distribution of QTL effects, similar to what different Bayesian methods assume for estimating marker effects, did not improve their prediction accuracy. The Bayes B method gave higher or equal accuracy rather than the rest. The real data analysis showed that similar to scenarios with a large number of QTLs in the simulation, there was no difference between the accuracies of the different methods for any of the traits.


2021 ◽  
pp. 190-200
Author(s):  
Lesia Mochurad ◽  
Yaroslav Hladun

The paper considers the method for analysis of a psychophysical state of a person on psychomotor indicators – finger tapping test. The app for mobile phone that generalizes the classic tapping test is developed for experiments. Developed tool allows collecting samples and analyzing them like individual experiments and like dataset as a whole. The data based on statistical methods and optimization of hyperparameters is investigated for anomalies, and an algorithm for reducing their number is developed. The machine learning model is used to predict different features of the dataset. These experiments demonstrate the data structure obtained using finger tapping test. As a result, we gained knowledge of how to conduct experiments for better generalization of the model in future. A method for removing anomalies is developed and it can be used in further research to increase an accuracy of the model. Developed model is a multilayer recurrent neural network that works well with the classification of time series. Error of model learning on a synthetic dataset is 1.5% and on a real data from similar distribution is 5%.


Author(s):  
A. Hanel ◽  
H. Klöden ◽  
L. Hoegner ◽  
U. Stilla

Today, cameras mounted in vehicles are used to observe the driver as well as the objects around a vehicle. In this article, an outline of a concept for image based recognition of dynamic traffic situations is shown. A dynamic traffic situation will be described by road users and their intentions. Images will be taken by a vehicle fleet and aggregated on a server. On these images, new strategies for machine learning will be applied iteratively when new data has arrived on the server. The results of the learning process will be models describing the traffic situation and will be transmitted back to the recording vehicles. The recognition will be performed as a standalone function in the vehicles and will use the received models. It can be expected, that this method can make the detection and classification of objects around the vehicles more reliable. In addition, the prediction of their actions for the next seconds should be possible. As one example how this concept is used, a method to recognize the illumination situation of a traffic scene is described. This allows to handle different appearances of objects depending on the illumination of the scene. Different illumination classes will be defined to distinguish different illumination situations. Intensity based features are extracted from the images and used by a classifier to assign an image to an illumination class. This method is being tested for a real data set of daytime and nighttime images. It can be shown, that the illumination class can be classified correctly for more than 80% of the images.


Author(s):  
Cara Murphy ◽  
John Kerekes

The classification of trace chemical residues through active spectroscopic sensing is challenging due to the lack of physics-based models that can accurately predict spectra. To overcome this challenge, we leveraged the field of domain adaptation to translate data from the simulated to the measured domain for training a classifier. We developed the first 1D conditional generative adversarial network (GAN) to perform spectrum-to-spectrum translation of reflectance signatures. We applied the 1D conditional GAN to a library of simulated spectra and quantified the improvement in classification accuracy on real data using the translated spectra for training the classifier. Using the GAN-translated library, the average classification accuracy increased from 0.622 to 0.723 on real chemical reflectance data, including data from chemicals not included in the GAN training set.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1648
Author(s):  
Mohamed Aboraya ◽  
Haitham M. Yousof ◽  
G.G. Hamedani ◽  
Mohamed Ibrahim

In this work, we propose and study a new family of discrete distributions. Many useful mathematical properties, such as ordinary moments, moment generating function, cumulant generating function, probability generating function, central moment, and dispersion index are derived. Some special discrete versions are presented. A certain special case is discussed graphically and numerically. The hazard rate function of the new class can be “decreasing”, “upside down”, “increasing”, and “decreasing-constant-increasing (U-shape)”. Some useful characterization results based on the conditional expectation of certain function of the random variable and in terms of the hazard function are derived and presented. Bayesian and non-Bayesian methods of estimation are considered. The Bayesian estimation procedure under the squared error loss function is discussed. Markov chain Monte Carlo simulation studies for comparing non-Bayesian and Bayesian estimations are performed using the Gibbs sampler and Metropolis–Hastings algorithm. Four applications to real data sets are employed for comparing the Bayesian and non-Bayesian methods. The importance and flexibility of the new discrete class is illustrated by means of four real data applications.


2019 ◽  
Vol 13 ◽  
pp. 117793221986081 ◽  
Author(s):  
Takayuki Osabe ◽  
Kentaro Shimizu ◽  
Koji Kadota

Empirical Bayes is a choice framework for differential expression (DE) analysis for multi-group RNA-seq count data. Its characteristic ability to compute posterior probabilities for predefined expression patterns allows users to assign the pattern with the highest value to the gene under consideration. However, current Bayesian methods such as baySeq and EBSeq can be improved, especially with respect to normalization. Two R packages (baySeq and EBSeq) with their default normalization settings and with other normalization methods (MRN and TCC) were compared using three-group simulation data and real count data. Our findings were as follows: (1) the Bayesian methods coupled with TCC normalization performed comparably or better than those with the default normalization settings under various simulation scenarios, (2) default DE pipelines provided in TCC that implements a generalized linear model framework was still superior to the Bayesian methods with TCC normalization when overall degree of DE was evaluated, and (3) baySeq with TCC was robust against different choices of possible expression patterns. In practice, we recommend using the default DE pipeline provided in TCC for obtaining overall gene ranking and then using the baySeq with TCC normalization for assigning the most plausible expression patterns to individual genes.


2005 ◽  
Vol 61 (5) ◽  
pp. 585-594 ◽  
Author(s):  
J. Pérez ◽  
K. Nolsøe ◽  
M. Kessler ◽  
L. García ◽  
E. Pérez ◽  
...  

Two methods for the classification of eight-membered rings based on a Bayesian analysis are presented. The two methods share the same probabilistic model for the measurement of torsion angles, but while the first method uses the canonical forms of cyclooctane and, given an empirical sequence of eight torsion angles, yields the probability that the associated structure corresponds to each of the ten canonical conformations, the second method does not assume previous knowledge of existing conformations and yields a clustering classification of a data set, allowing new conformations to be detected. Both methods have been tested using the conformational classification of Csp 3 eight-membered rings described in the literature. The methods have also been employed to classify the solid-state conformation in Csp 3 eight-membered rings using data retrieved from an updated version of the Cambridge Structural Database (CSD).


Author(s):  
Mathieu Barbier ◽  
Christian Laugier ◽  
Olivier Simonin ◽  
Javier Ibanez-Guzman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document