scholarly journals Production of the Hydroxyl Radical and Removal of Formaldehyde by Calcined Green Tuff Powder and Tile

2019 ◽  
Vol 11 (12) ◽  
pp. 3390 ◽  
Author(s):  
Toyohisa Fujita ◽  
Lanyin Zhang ◽  
Gjergj Dodbiba ◽  
Ji-Whan Anh ◽  
Yuezhou Wei ◽  
...  

Waste green tuff powder produced by cutting Towada stone has been utilized to eliminate formaldehyde related to greenhouse gases. The green tuff contains TiO2 on zeolite as observed by scanning electron microscope (SEM)t. The green tuff is a natural catalyst that can produce hydrogen peroxide with moisture and oxygen with light. The optimum temperature for calcination of the green tuff powder has been investigated in order to produce hydroxyl radicals from the decomposition of hydrogen peroxide using ultraviolet light (UV) and no light. The green tuff calcined at 800 °C showed a high decomposition rate of hydrogen peroxide with no UV light under high alkaline conditions when measured by using ESR. With UV light, the optimum temperature for calcination of green tuff powder in order to reduce the hydroxyl radical was also 800 °C. Next, the powder calcined at 800 °C was used to produce the tile by compression and heating, and then the formaldehyde adsorption rate was measured. The green tuff powder calcined at 800 °C showed a high adsorption rate, similar to that of the activated carbon. The tiles formed at 40 MPa and heated at 1100 °C were the strongest and also showed adsorption with respect to formaldehyde. The adsorbed formaldehyde on the green tuff tile and powder was possibility decomposed by the hydroxyl radical produced by photocatalysis.

Author(s):  
Toyohisa Fujita ◽  
Lanyin Zhang ◽  
Gjergj Dodbiba ◽  
Ji-Whan Anh ◽  
Yuezhou Wei ◽  
...  

Wasted Green tuff powder produced by cutting Towada stone is recycled as environmental cleaning material. The optimum temperature for green tuff powder calcination to reduce the hydroxyl radical produced in hydrogen peroxide decomposition with ultraviolet light (UV) and no light. The green tuff calcined at 800 °C shows the large decomposition rate of hydrogen peroxide with no UV light when measured by using ESR. With UV light, the optimum temperature for calcinating the green tuff powder in order to reduce hydroxyl radical is also 800 °C. Next, the powder calcined at 800 °C is used to produce the tile by compression and heating, and then the formaldehyde adsorption rate was measured. The green tuff powder calcined at 800 °C showed a high adsorption rate, similar to that of the activated carbon. The tiles formed at 40 MPa and heated st 1100 °C were the strongest and also adsorbed formaldehyde. The adsorbed formaldehyde on the green tuff tile and powder might have a possibility to decompose by photocatalytic.


1983 ◽  
Vol 64 (6) ◽  
pp. 649-653 ◽  
Author(s):  
D. A. Rowley ◽  
B. Halliwell

1. Superoxide and hydrogen peroxide are formed by activated phagocytes and react together in the presence of iron salts to form the hydroxyl radical, which attacks hyaluronic acid. Ascorbic acid also interacts with hydrogen peroxide and iron salts to form hydroxyl radical in a reaction independent of superoxide. Since iron salts, ascorbate and activated phagocytes are present in the rheumatoid joint, experiments were designed to see whether ascorbate-dependent or superoxide-dependent formation of hydroxyl radicals would be more important in vivo. 2. in the present study, addition of ascorbate to a superoxide-generating system at concentrations of 100 μmol/l provoked a superoxide-independent formation of hydroxyl radicals for a short period. Lower concentrations of ascorbate did not do this. It is therefore suggested that the superoxide-dependent reaction is probably more important. 3. It is further suggested that destruction of ascorbate by oxygen radicals formed by activated phagocytes accounts for the previously reported low concentrations of this compound in the serum and synovial fluid of rheumatoid patients.


1988 ◽  
Vol 251 (3) ◽  
pp. 893-899 ◽  
Author(s):  
H Iwahashi ◽  
T Ishii ◽  
R Sugata ◽  
R Kido

Superoxide dismutase (SOD) enhanced the formation of hydroxyl radicals, which were detected by using the e.s.r. spin-trapping technique, in a reaction mixture containing 3-hydroxyanthranilic acid (or p-aminophenol), Fe3+ ions, EDTA and potassium phosphate buffer, pH 7.4. The hydroxyl-radical formation enhanced by SOD was inhibited by catalase and desferrioxamine, and stimulated by EDTA and diethylenetriaminepenta-acetic acid, suggesting that both hydrogen peroxide and iron ions participate in the reaction. The hydroxyl-radical formation enhanced by SOD may be considered to proceed via the following steps. First, 3-hydroxyanthranilic acid is spontaneously auto-oxidized in a process that requires molecular oxygen and yields superoxide anions and anthranilyl radicals. This reaction seems to be reversible. Secondly, the superoxide anions formed in the first step are dismuted by SOD to generate hydrogen peroxide and molecular oxygen, and hence the equilibrium in the first step is displaced in favour of the formation of superoxide anions. Thirdly, hydroxyl radicals are generated from hydrogen peroxide through the Fenton reaction. In this Fenton reaction Fe2+ ions are available since Fe3+ ions are readily reduced by 3-hydroxyanthranilic acid. The superoxide anions do not seem to participate in the reduction of Fe3+ ions, since superoxide anions are rapidly dismuted by SOD present in the reaction mixture.


1984 ◽  
Vol 224 (3) ◽  
pp. 697-701 ◽  
Author(s):  
J M C Gutteridge

The stimulatory effect of ferrous salts on the peroxidation of phospholipids can be enhanced by EDTA when the concentration of Fe2+ in the reaction is greater than that of EDTA. Hydroxyl-radical scavengers do not inhibit peroxidation until the concentrations of Fe2+ and EDTA in the reaction are equal. Lipid peroxidation is then substantially initiated by hydroxyl radicals derived from a Fenton-type reaction requiring hydrogen peroxide. Superoxide radicals appear to play some role in the formation of initiating species.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1046 ◽  
Author(s):  
Georgiy B. Shul’pin ◽  
Yuriy N. Kozlov ◽  
Lidia S. Shul’pina

Ligands are innocent when they allow oxidation states of the central atoms to be defined. A noninnocent (or redox) ligand is a ligand in a metal complex where the oxidation state is not clear. Dioxygen can be a noninnocent species, since it exists in two oxidation states, i.e., superoxide (O2−) and peroxide (O22−). This review is devoted to oxidations of C–H compounds (saturated and aromatic hydrocarbons) and alcohols with peroxides (hydrogen peroxide, tert-butyl hydroperoxide) catalyzed by complexes of transition and nontransition metals containing innocent and noninnocent ligands. In many cases, the oxidation is induced by hydroxyl radicals. The mechanisms of the formation of hydroxyl radicals from H2O2 under the action of transition (iron, copper, vanadium, rhenium, etc.) and nontransition (aluminum, gallium, bismuth, etc.) metal ions are discussed. It has been demonstrated that the participation of the second hydrogen peroxide molecule leads to the rapture of O–O bond, and, as a result, to the facilitation of hydroxyl radical generation. The oxidation of alkanes induced by hydroxyl radicals leads to the formation of relatively unstable alkyl hydroperoxides. The data on regioselectivity in alkane oxidation allowed us to identify an oxidizing species generated in the decomposition of hydrogen peroxide: (hydroxyl radical or another species). The values of the ratio-of-rate constants of the interaction between an oxidizing species and solvent acetonitrile or alkane gives either the kinetic support for the nature of the oxidizing species or establishes the mechanism of the induction of oxidation catalyzed by a concrete compound. In the case of a bulky catalyst molecule, the ratio of hydroxyl radical attack rates upon the acetonitrile molecule and alkane becomes higher. This can be expanded if we assume that the reactions of hydroxyl radicals occur in a cavity inside a voluminous catalyst molecule, where the ratio of the local concentrations of acetonitrile and alkane is higher than in the whole reaction volume. The works of the authors of this review in this field are described in more detail herein.


2015 ◽  
Vol 71 (3) ◽  
pp. 446-453 ◽  
Author(s):  
E. Felis ◽  
K. Miksch

This paper describes the results of experiments on the decomposition of selected nonylphenols (NPs) in aqueous solutions using the UV, UV/H2O2, O3 and UV/O3 processes. The goal of the research was to determine the kinetic parameters of the above-mentioned processes, and to estimate their effectiveness. These substances were selected because of their ubiquitous occurrence in the aquatic environment, resistance to biodegradation and environmental significance. As a result of the experiments, the quantum yields of the 4-n-nonylphenol (4NP) and NP (technical mixture) photodegradation in aqueous solution were calculated to be 0.15 and 0.17, respectively. The values of the second-order rate constants of the investigated compounds with hydroxyl radical and NP with ozone were also determined. The estimated second-order rate constants of 4NP and NP with hydroxyl radicals were equal to 7.6 × 108–1.3 × 109 mol−1 L s−1. For NP, the determined rate constant with ozone was equal to 2.01 × 106 mol−1 L s−1. The performed experiments showed that NP was slightly more susceptible to degradation by the UV radiation and hydroxyl radicals than 4NP. The study demonstrated also that the polychromatic UV-light alone and also in combination with selected oxidizers (i.e. hydrogen peroxide, ozone) may be successfully used for the removal of selected NPs from the aqueous medium.


Sign in / Sign up

Export Citation Format

Share Document