scholarly journals Quantifying Impacts of Urban Microclimate on a Building Energy Consumption—A Case Study

2019 ◽  
Vol 11 (18) ◽  
pp. 4921 ◽  
Author(s):  
Jiying Liu ◽  
Mohammad Heidarinejad ◽  
Saber Khoshdel Nikkho ◽  
Nicholas W. Mattise ◽  
Jelena Srebric

This paper considered an actual neighborhood to quantify impacts of the local urban microclimate on energy consumption for an academic building in College Park, USA. Specifically, this study accounted for solar irradiances on building and ground surfaces to evaluate impacts of the local convective heat transfer coefficient (CHTC), infiltration rate, and coefficient of performance (COP) on building cooling systems. Using computational fluid dynamics (CFD) allowed for the calculation of local temperature and velocity values and implementation of the local variables in the building energy simulation (BES) model. The discrepancies among the cases with different CHTCs showed slight influence of CHTCs on sensible load, in which the maximum variations existed 1.95% for sensible cooling load and 3.82% for sensible heating load. The COP analyses indicated windward wall and upstream roof are the best locations for the installation of these cooling systems. This study used adjusted infiltration rate values that take into account the local temperature and velocity. The results indicated the annual cooling and heating energy increased by 2.67% and decreased by 2.18%, respectively.

2021 ◽  
Vol 11 (4) ◽  
pp. 1481
Author(s):  
Aleksandra Cichoń ◽  
William Worek

This paper presents the analytical investigation of a novel system for combined Dew Point Cooling and Water Recovery (DPC-WR system). The operating principle of the presented system is to utilize the dew point cooling phenomenon implemented in two stages in order to obtain both air cooling and water recovery. The system performance is described by different indicators, including the coefficient of performance (COP), gained output ratio (GOR), energy utilization factor (EUF), specific energy consumption (SEC) and specific daily water production (SDWP). The performance indicators are calculated for various climatic zones using a validated analytical model based on the convective heat transfer coefficient. By utilizing the dew point cooling phenomenon, it is possible to minimize the heat and electric energy consumption from external sources, which results in the COP and GOR values being an order of magnitude higher than for other cooling and water recovery technologies. The EUF value of the DPC-WR system ranges from 0.76 to 0.96, with an average of 0.90. The SEC value ranges from 0.5 to 2.0 kWh/m3 and the SDWP value ranges from 100 to 600 L/day/(kg/s). In addition, the DPC-WR system is modular, i.e., it can be multiplied as needed to achieve the required cooling or water recovery capacity.


Author(s):  
Sachin Sunil Mothiravally ◽  
Sachidananda Hassan Krishanmurthy

Air conditioning plays a significant role to maintain a cool atmosphere in warm conditions, However, the power consumed by the machine is higher. The commercial prevailing cooling systems are required to operate ventilation and cooling systems in buildings and in turn consumes more power. These systems apart from consuming electricity it also adds to the CO2 emissions to our environment. These energy consumption and CO2 emissions can be decreased by the assistance of energy effective frameworks to the prevailing air conditioning system. The study was conducted on a package unit of 414.2 kW by measuring the relative humidity, dry bulb, and wet bulb temperature to investigate the effect of indirect evaporative cooling on the systems COP. Also, the modelling of the package unit was done using Creo software and the analysis was carried out using ANSYS considering the flow and thermal analysis for different components of the package units. From this analysis it can be observed that by implementing the adiabatic cooling in package unit it is possible to save energy consumption. From the results it can be concluded that energy efficiency was more and the return on investment is high. Also, coefficient of performance of this machine is high and consumes less electricity and the expected energy savings is 20%.


Author(s):  
Stefan Reich ◽  
Sagar Vanapalli ◽  
Henning Duerr

<p>The controlling of the building climate requires an immense energy consumption worldwide. In modern buildings, the heating energy amount can be reduced into reasonable level by the use of building insulation and low u-value facade parts. In most countries the energy needed for building cooling is a significant amount of the total building energy consumption. At office buildings the necessary cooling energy often exceeds the consumed heating energy. Therefore modern building may use a variety of shading systems to reduce the input of solar radiation into the rooms. Beside manually operated systems especially electronically operated ones seem to be the future standard in buildings.</p><p>Despite their huge comfort and efficiency these electronically operated systems are often limited to higher standard buildings and wealthier regions. Therefore this paper describes as intermediate results of an ongoing research project several concepts of the integration of energy autonomous shading and ventilation systems. All of them base on the use of temperature sensitive shape memory alloy as actuator for the moving of mechanical components. They do not need any electrical energy or electrical components, like controllers, motors or infrastructure. The concept is demonstrated in various applications from shading blinds, shading lamellas, night cooling ventilation or forced ventilation for necessary room air exchange.</p><p>Promising main applications, as night cooling or shading lamellas are investigated and demonstrated in life- size mock-ups.</p>


2019 ◽  
pp. 53-65
Author(s):  
Renata Domingos ◽  
Emeli Guarda ◽  
Elaise Gabriel ◽  
João Sanches

In the last decades, many studies have shown ample evidence that the existence of trees and vegetation around buildings can contribute to reduce the demand for energy by cooling and heating. The use of green areas in the urban environment as an effective strategy in reducing the cooling load of buildings has attracted much attention, though there is a lack of quantitative actions to apply the general idea to a specific building or location. Due to the large-scale construction of high buildings, large amounts of solar radiation are reflected and stored in the canyons of the streets. This causes higher air temperature and surface temperature in city areas compared to the rural environment and, consequently, deteriorates the urban heat island effect. The constant high temperatures lead to more air conditioning demand time, which results in a significant increase in building energy consumption. In general, the shade of the trees reduces the building energy demand for air conditioning, reducing solar radiation on the walls and roofs. The increase of urban green spaces has been extensively accepted as effective in mitigating the effects of heat island and reducing energy use in buildings. However, by influencing temperatures, especially extreme, it is likely that trees also affect human health, an important economic variable of interest. Since human behavior has a major influence on maintaining environmental quality, today's urban problems such as air and water pollution, floods, excessive noise, cause serious damage to the physical and mental health of the population. By minimizing these problems, vegetation (especially trees) is generally known to provide a range of ecosystem services such as rainwater reduction, air pollution mitigation, noise reduction, etc. This study focuses on the functions of temperature regulation, improvement of external thermal comfort and cooling energy reduction, so it aims to evaluate the influence of trees on the energy consumption of a house in the mid-western Brazil, located at latitude 15 ° S, in the center of South America. The methodology adopted was computer simulation, analyzing two scenarios that deal with issues such as the influence of vegetation and tree shade on the energy consumption of a building. In this way, the methodological procedures were divided into three stages: climatic contextualization of the study region; definition of a basic dwelling, of the thermophysical properties; computational simulation for quantification of energy consumption for the four facade orientations. The results show that the façades orientated to north, east and south, without the insertion of arboreal shading, obtained higher values of annual energy consumption. With the adoption of shading, the facades obtained a consumption reduction of around 7,4%. It is concluded that shading vegetation can bring significant climatic contribution to the interior of built environments and, consequently, reduction in energy consumption, promoting improvements in the thermal comfort conditions of users.


2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


Sign in / Sign up

Export Citation Format

Share Document