scholarly journals Vulnerability of the Maritime Network to Tropical Cyclones in the Northwest Pacific and the Northern Indian Ocean

2019 ◽  
Vol 11 (21) ◽  
pp. 6176
Author(s):  
Zhicheng Shen ◽  
Xinliang Xu ◽  
Jiaohao Li ◽  
Shikuan Wang

Maritime networks are one of the most important types of transportation networks in international logistics and it accounts for 90% of the global trade volume. However, the structure of maritime networks is severely impacted by tropical cyclones, especially the maritime network in the Northwest Pacific and the northern Indian Ocean. This paper investigates the vulnerability of the maritime network in the Northwest Pacific and the northern Indian Ocean to the influence of tropical cyclones through removing ports at high or very high tropical cyclones hazard levels and analyzing how the network structure characteristics change from a complex network point of view. From the results, we find that this maritime network is a small-world network and the degree distribution of ports follows a power law distribution. The ports in East Asia are impacted more severely by the tropical cyclones. Moreover, this maritime network exhibits some vulnerability to tropical cyclones. However, the interconnection of the survived ports is not severely impacted, when the network is attacked by tropical cyclones. The port system in the Philippines is most vulnerable to the influence of tropical cyclones, followed by the ports systems in Japan and China. The paper also shows that it is important for studies of maritime network vulnerability to identify the ports that are both important to the regional and cross-regional logistics and severely impacted by natural hazards. The findings provide a theoretical basis for optimizing the port layout and improving the ability of the network to resist damage caused by tropical cyclones.

Zootaxa ◽  
2020 ◽  
Vol 4729 (4) ◽  
pp. 501-518
Author(s):  
MATTHEW J. SCRIPTER ◽  
W. WAYNE PRICE ◽  
RICHARD W. HEARD

The first occurrences of the estuarine mysid Deltamysis holmquistae Bowman & Orsi from the Atlantic Ocean are documented from sites on the eastern Florida and northwest Gulf of Mexico (Texas) coasts of North America. Based on examination of type material and specimens from Florida and Texas, considerable morphological variability and additional characters were observed necessitating a rediagnosis of the monotypic genus Deltamysis and a redescription of D. holmquistae. As a result of these new taxonomic criteria, the Indian Ocean species, Kochimysis pillaii Panampunnayil & Biju, described from southwest coastal India, is subsumed as a junior synonym of D. holmquistae. The current distribution of this apparently invasive species is probably due to maritime commerce. The geographical location of the endemic or source populations of D. holmquistae remains undetermined; however, its co-occurrence in California with three introduced Asian mysids suggests a northern Indian Ocean or northwest Pacific origin. 


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiang Wang ◽  
Haiyan Jiang ◽  
Xun Li ◽  
Jun A. Zhang

This study examines the shear-relative rainfall spatial distribution of tropical cyclones (TCs) during landfall based on the 19-year (1998–2016) TRMM satellite 3B42 rainfall estimate dataset and investigates the role of upper-tropospheric troughs on the rainfall intensity and distribution after TCs make a landfall over the six basins of Atlantic (ATL), eastern and central Pacific (EPA), northwestern Pacific (NWP), northern Indian Ocean (NIO), southern Indian Ocean (SIO), and South Pacific (SPA). The results show that the wavenumber 1 perturbation can contribute ∼ 50% of the total perturbation energy of total TC rainfall. Wavenumber 1 rainfall asymmetry presents the downshear-left maxima in the deep-layer vertical wind shear between 200 and 850 hPa for all the six basins prior to making a landfall. In general, wavenumber 1 rainfall tends to decrease less if there is an interaction between TCs and upper-level troughs located at the upstream of TCs over land. The maximum TC rain rate distributions tend to be located at the downshear-left (downshear) quadrant under the high (low)-potential vorticity conditions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuru Han ◽  
Dongsheng Zhang ◽  
Chunsheng Wang ◽  
Yadong Zhou

Alvinellids have long been considered to be endemic to Pacific vents until recent discovery of their presence in the Indian Ocean. Here, a new alvinellid is characterized and formally named from recently discovered vents, Wocan, and Daxi, in the northern Indian Ocean. Both morphological and molecular evidences support its placement in the genus Paralvinella, representing the first characterized alvinellid species out of the Pacific. The new species, formally described as Paralvinella mira n. sp. herein, is morphologically most similar to Paralvinella hessleri from the northwest Pacific, but the two species differ in three aspects: (1), the first three chaetigers are not fused in P. mira n. sp., whereas fused in P. hessleri; (2), paired buccal tentacles short and pointed in P. mira but large and strongly pointed in P. hessleri; (3), numerous slender oral tentacles ungrouped in P. mira but two groups in P. hessleri. Phylogenetic inference using the concatenated alignments of the cytochrome c oxidase I (COI), 16S rRNA and 18S rRNA genes strongly supports the clustering of P. mira with two West Pacific congeners, P. hessleri and an undescribed species (Paralvinella sp. ZMBN). The resulting Indian/West Pacific lineage suggests a possible invasion into the Indian Ocean from the West Pacific. This is the third polychaete reported from Wocan hydrothermal field. Among the three species, two including P. mira and Hesiolyra heteropoda (Annelida:Hesionidae) are present in high abundance, forming an alvinellids/hesionids-dominated polychaete assemblage distinct from that at all other Central Indian Ridge and Southwest Indian Ridge vents. Thus, this study expands our understanding of alvinellid biogeography beyond the Pacific, and adds to the unique biodiversity of the northern Indian Ocean vents, with implications for biogeographic subdivision across the Indian Ocean ridges.


2017 ◽  
Author(s):  
Alex R. Baker ◽  
Maria Kanakidou ◽  
Katye E. Altieri ◽  
Nikos Daskalakis ◽  
Gregory S. Okin ◽  
...  

Abstract. Nitrogen (N) emissions to the atmosphere have increased by a factor of 3–4 through anthropogenic activity since the Industrial Revolution. This has led to large increases in the deposition of nitrate (NO3−) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ~ 2900 observations of aerosol NO3− and NH4+ concentrations, acquired from sampling aboard ships in the period 1995–2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N. Surface particulate NO3− and NH4+ concentrations simulated by the TM4-ECPL (TM4) model were compared to observed aerosol concentrations. Dry deposition fluxes of these species predicted by TM4 (ModDep) were compared with equivalent fluxes calculated from the observed concentrations (CalDep) using two commonly applied methods for the determination of CalDep. CalDep was also compared to total dry deposition fluxes of oxidised N (NOy) and reduced N (NHx) from TM4 and the ACCMIP multi-model mean product. Comparison in the three study regions suggests that TM4 over-estimates NO3− concentrations and under-estimates NH4+ concentrations, with spatial distributions in the tropical Atlantic and northern Indian Ocean not being reproduced by the model. In the case of NH4+ in the Indian Ocean, this discrepancy was probably due to seasonal biases in the sampling. Similar patterns were observed in the various comparisons of CalDep to ModDep and it was not possible to assess objectively the relative merits of the two methods for estimating CalDep. Comparisons of NH4+ CalDep to NHx ModDep were impaired by the significant fraction of gas-phase NH3 deposition incorporated in the TM4 and ACCMIP model products. All of the comparisons (of concentration and deposition) suffered due to the large uncertainty in dry deposition velocities used in the models and in the calculation of CalDep. These uncertainties have been a major limitation on estimates of the flux of material to the oceans for several decades.


Author(s):  
Abraham Torres ◽  
Russell Glazer ◽  
Erika Coppola ◽  
Xuejie Gao ◽  
Kevin Hodges ◽  
...  

<p>Under the Coordinated Regional Downscaling Experiment (CORDEX) initiative, simulations of tropical cyclones were performed using the latest version of the International Centre for Theoretical Physics (ICTP) Regional Climate Model 4 (RegCM4) at a spatial resolution of 25 km over four domains (Australasia, Central America, Western Pacific and South Asia). These simulations cover the 130-year period, 1970-2099, for two Representative Concentration Pathways, 2.6 (RCP2.6) and 8.5 (RCP8.5) emission scenarios and were driven by three General Circulation Models (GCMs) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5). In these simulations, the potential changes in TC activity for future climate conditions over five areas of tropical cyclone formation (North Indian Ocean, the Northwest Pacific, North Atlantic, Australasia and Eastern Pacific) are investigated, using an objective algorithm to identify and track them. The RegCM4 simulations driven by GCMs are evaluated for the period of 1995–2014 by comparing them with the observed tropical cyclone data from the International Best Track Archive for Climate Stewardship (IBTrACS); then the changes in two future periods (2041-2016 and 2080–2099), relative to the baseline period (1995–2014), are analyzed for RegCM4 simulations driven by GCMs. Preliminary results show that RegCM4 simulations driven by GCMs are capable of most of the features of the observed tropical cyclone climatology, and the future projections show an increase in the number of tropical cyclones over the North Indian Ocean, the Northwest Pacific and Eastern Pacific regions. These changes are consistent with an increase in mid-tropospheric relative humidity. On the other hand, the North Atlantic and Australasia regions show a decrease in tropical cyclone frequency, mostly associated with an increase in wind shear. We also find a consistent increase in the future storm rainfall rate and the frequency of the most intense tropical cyclones over almost all the domains. Our study shows robust and statistically significant responses, often, but not always, in line with previous studies. This implies that a robust assessment of tropical cyclone changes requires analyses of ensembles of simulations with high-resolution models capable of representing the response of different characteristics of different key atmospheric factors.</p>


2012 ◽  
Vol 25 (22) ◽  
pp. 7867-7883 ◽  
Author(s):  
Yuan Yuan ◽  
Song Yang ◽  
Zuqiang Zhang

Abstract The authors examine different evolution features of the low-level anticyclone over the tropical northwestern Pacific between eastern Pacific (EP) El Niño events and central Pacific (CP) El Niño events. During EP El Niño, the low-level anticyclone shows an eastward movement from the northern Indian Ocean to the east of the Philippines. During CP El Niño, however, the anticyclone is mostly confined to the west of the Philippines. It is weaker, exhibits a shorter lifetime, and lacks eastward movement compared to the Philippine Sea anticyclone (PSAC) during EP El Niño. Investigation into the possible impact of Indian Ocean (IO) sea surface temperature (SST) on the evolution of the low-level anticyclone during EP and CP El Niño indicates that both SST and low-level atmospheric circulation over the IO are related more strongly with EP El Niño than with CP El Niño. The IO SST tends to exert a more prominent influence on PSAC during EP El Niño than during CP El Niño. During the developing summer and autumn of EP El Niño, the anomalous anticyclone over the northern Indian Ocean excited by positive IO dipole may contribute to an early development of the PSAC. During the winter and decaying spring, the anomalous anticyclone to the east of the Philippines instigated by the IO basin-wide warming mode also favors a larger persistence of the PSAC. During CP El Niño, however, IO SST shows a negligible impact on the evolution of the anticyclone.


2021 ◽  
Vol 8 ◽  
Author(s):  
Riyanka Roy Chowdhury ◽  
S. Prasanna Kumar ◽  
Arun Chakraborty

The northern Indian Ocean, comprising of two marginal seas, the Arabian Sea (AS) and the Bay of Bengal (BoB), is known for the occurrence of tropical cyclones. The simultaneous occurrence of the cyclones Luban in the AS and Titli in the BoB is a rare phenomenon, and, in the present study, we examined their contrasting upper ocean responses and what led to their formation in October 2018. Being a category-2 cyclone, the maximum cooling of sea surface temperature associated with Titli was 1°C higher than that of Luban, a category-1 cyclone. The higher tropical cyclone heat potential in the BoB compared with the AS was one of the reasons why Titli was more intense than Luban. The enhancement of chlorophyll a (Chl-a) and net primary productivity (NPP) by Luban was 2- and 3.7-fold, respectively, while that by Titli was 3- and 5-fold, respectively. Despite this, the magnitudes of both Chl-a and NPP were higher in the AS compared with the BoB. Consistent with physical and biological responses, the CO2 outgassing flux associated with Titli was 12-fold higher in comparison to the pre-cyclone value, while that associated with Luban was 10-fold higher. Unlike the Chl-a and NPP, the magnitude of CO2 flux in the BoB was higher than that in the AS. Although the cyclones Luban and Titli originated simultaneously, their generating mechanisms were quite different. What was common for the genesis of both cyclones was the pre-conditioning of the upper ocean in 2018 by the co-occurrence of El Niño and the positive phase of Indian Ocean dipole along with the cold phase of the Pacific decadal oscillation, all of which worked in tandem and warmed the AS and parts of the BoB. What triggered the genesis of Luban in the AS was the arrival of the Madden–Julian oscillation (MJO) and the mixed Rossby-gravity wave during the first week of October. The genesis of Titli in the BoB was triggered by the eastward propagation of the MJO and the associated enhanced convection from the AS into the region of origin of Titli along with the arrival of the downwelling oceanic Rossby wave.


2017 ◽  
Vol 17 (13) ◽  
pp. 8189-8210 ◽  
Author(s):  
Alex R. Baker ◽  
Maria Kanakidou ◽  
Katye E. Altieri ◽  
Nikos Daskalakis ◽  
Gregory S. Okin ◽  
...  

Abstract. Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO3−) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work,  ∼  2900 observations of aerosol NO3− and NH4+ concentrations, acquired from sampling aboard ships in the period 1995–2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NOy) and reduced N (NHx) and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4): ModDep for NOy, NHx and particulate NO3− and NH4+, and surface-level particulate NO3− and NH4+ concentrations. As a model ensemble, ACCMIP can be expected to be more robust than TM4, while TM4 gives access to speciated parameters (NO3− and NH4+) that are more relevant to the observed parameters and which are not available in ACCMIP. Dry deposition fluxes (CalDep) were calculated from the observed concentrations using estimates of dry deposition velocities. Model–observation ratios (RA, n), weighted by grid-cell area and number of observations, were used to assess the performance of the models. Comparison in the three study regions suggests that TM4 overestimates NO3− concentrations (RA, n =  1.4–2.9) and underestimates NH4+ concentrations (RA, n =  0.5–0.7), with spatial distributions in the tropical Atlantic and northern Indian Ocean not being reproduced by the model. In the case of NH4+ in the Indian Ocean, this discrepancy was probably due to seasonal biases in the sampling. Similar patterns were observed in the various comparisons of CalDep to ModDep (RA, n =  0.6–2.6 for NO3−, 0.6–3.1 for NH4+). Values of RA, n for NHx CalDep–ModDep comparisons were approximately double the corresponding values for NH4+ CalDep–ModDep comparisons due to the significant fraction of gas-phase NH3 deposition incorporated in the TM4 and ACCMIP NHx model products. All of the comparisons suffered due to the scarcity of observational data and the large uncertainty in dry deposition velocities used to derive deposition fluxes from concentrations. These uncertainties have been a major limitation on estimates of the flux of material to the oceans for several decades. Recommendations are made for improvements in N deposition estimation through changes in observations, modelling and model–observation comparison procedures. Validation of modelled dry deposition requires effective comparisons to observable aerosol-phase species' concentrations, and this cannot be achieved if model products only report dry deposition flux over the ocean.


Zootaxa ◽  
2003 ◽  
Vol 218 (1) ◽  
pp. 1
Author(s):  
RICHARD WINTERBOTTOM

A new species of the genus Trimma is described. Trimma annosum is characterized by the presence of scales in the predorsal midline, non-elongate spines in the first dorsal fin, and a moderate interorbital trench. The fifth pelvic-fin ray is branched dichotomously once and is 40-65% the length of the fourth. When alive, Trimma annosum is bluish grey with 3 or 4 rows of large yellow blotches on the head and body. In addition to the northern Indian Ocean where it is apparently rare, the species is distributed eastward throughout Indonesia and the Philippines to China, Micronesia and Fiji. The osteology of this species is described and illustrated in some detail to form the basis for a series of phylogenetic studies of Trimma currently being undertaken.


Sign in / Sign up

Export Citation Format

Share Document