scholarly journals Analysis of Environmental Productivity on Fossil Fuel Power Plants in the U.S.

2019 ◽  
Vol 11 (24) ◽  
pp. 6907
Author(s):  
Yung-Hsiang Lu ◽  
Ku-Hsieh Chen ◽  
Jen-Chi Cheng ◽  
Chih-Chun Chen ◽  
Sian-Yuan Li

In 2007, the Clean Air Act officially included greenhouse gases, making fossil fuel power plants the first of key industries regulated by the Environmental Protection Agency. How do we measure the impact of the regulations on these power plants’ productivity? Previous studies that attempt to answer this question have provided inadequate answers because their samples cover the periods only up to 2007, and they often use greenhouse gases as the only proxy for the undesirable output. This paper collects data from 133 fossil fuel power plants in the United States and covers 2004 to 2013. These power plants are divided into Sun Belt and Frost Belt based on their geographical locations. To measure the undesirable outputs, we used both carbon dioxide and toxic emissions as the proxies. The estimation model includes the construction of a generalized common stochastic frontier (metafrontier) and a Malmquist productivity index. We used the index to measure the change in productivity for the power plants before and after the implementation of the regulation. The results indicate that, since regulation in 2007, the overall production efficiency of the power plants has declined incessantly while productivity has seen a sustained downward trend despite two surges in growth.

Author(s):  
Radim J. Sram

Thirty years ago, Northern Bohemia in the Czech Republic was one of the most air polluted areas in Europe. After political changes, the Czech government put forward a research program to determine if air pollution is really affecting human health. This program, later called the “Teplice Program”, was initiated in collaboration with scientists from the United States Environmental Protection Agency (US EPA). This cooperation made possible the use of methods on the contemporary level. The very high concentrations of sulphur dioxide (SO2), particulate matter of 10 micrometers or less (PM10), and polycyclic aromatic hydrocarbons (PAHs) present in the air showed, for the first time, the impact of air pollutants on the health of the population in mining districts: adverse pregnancy outcomes, the impact of air pollution on sperm morphology, learning disabilities in children, and respiratory morbidity in preschool children. A surprising result came from the distribution of the sources of pollution: 70% of PM10 pollution came from local heating and not from power plants as expected. Thanks to this result, the Czech government supported changes in local heating from brown coal to natural gas. This change substantially decreased SO2 and PM10 pollution and affected mortality, especially cardiovascular mortality.


Author(s):  
Patricia N. Seevam ◽  
Julia M. Race ◽  
Martin J. Downie ◽  
Phil Hopkins

Climate change has been attributed to greenhouse gases with carbon dioxide (CO2) being the major contributor. Most of these CO2 emissions originate from the burning of fossil fuels (e.g. power plants). Governments and industry worldwide are now proposing to capture CO2 from their power plants and either store it in depleted reservoirs or saline aquifers (‘Carbon Capture and Storage’, CCS), or use it for ‘Enhanced Oil Recovery’ (EOR) in depleting oil and gas fields. The capture of this anthropogenic (man made sources of CO2) CO2 will mitigate global warming, and possibly reduce the impact of climate change. The United States has over 30 years experience with the transportation of carbon dioxide by pipeline, mainly from naturally occurring, relatively pure CO2 sources for onshore EOR. CCS projects differ significantly from this past experience as they will be focusing on anthropogenic sources from major polluters such as fossil fuel power plants, and the necessary CO2 transport infrastructure will involve both long distance onshore and offshore pipelines. Also, the fossil fuel power plants will produce CO2 with varying combinations of impurities depending on the capture technology used. CO2 pipelines have never been designed for these differing conditions; therefore, CCS will introduce a new generation of CO2 for transport. Application of current design procedures to the new generation pipelines is likely to yield an over-designed pipeline facility, with excessive investment and operating cost. In particular, the presence of impurities has a significant impact on the physical properties of the transported CO2 which affects: pipeline design; compressor/pump power; repressurisation distance; pipeline capacity. These impurities could also have implications in the fracture control of the pipeline. All these effects have direct implications for both the technical and economic feasibility of developing a carbon dioxide transport infrastructure onshore and offshore. This paper compares and contrasts the current experience of transporting CO2 onshore with the proposed transport onshore and offshore for CCS. It covers studies on the effect of physical and transport properties (hydraulics) on key technical aspects of pipeline transportation, and the implications for designing and operating a pipeline for CO2 containing impurities. The studies reported in the paper have significant implications for future CO2 transportation, and highlight a number of knowledge gaps that will have to be filled to allow for the efficient and economic design of pipelines for this ‘next’ generation of anthropogenic CO2.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254820
Author(s):  
Yu Sun ◽  
Yonghua Lu ◽  
Zichun Wang ◽  
Mingyue Li

The global population is rapidly increasing, the arable land area is losing in a large scale, and the water supply capacity is limited. Meanwhile, China is in a critical period of the transformation of apple industrial structure, and the improvement of apple production efficiency is an important way to increase farmers’ output and income, moderate-scale operation is the inevitable trend in agricultural modernization. However, few studies have explored the production efficiency of the apple industry from the perspective of planting scale. In China, there are seven major apple-producing provinces: Shaanxi, Shandong, Gansu, Henan, Shanxi, Hebei, and Liaoning. Therefore, based on provincial panel data of the seven main apple-producing areas in China, this study used the Malmquist productivity index and data envelopment analysis to measure the efficiency level of the apple industry. At the same time, the threshold regression model was used to analyze the characteristics of the change in apple planting scale and production efficiency. The results showed that apple production efficiency in different regions of China exhibited regional differences and time series fluctuations. Apple planting scale had a "double" threshold effect, and the impact on apple production efficiency showed a "negative effect–positive effect" trend. Therefore, the suggestion is to appropriately adjust the scale of operation, take measures according to local conditions, promote the upgrading of apple production technology, and realize the integration of apple production and sales by using “Internet +.”


1970 ◽  
Vol 5 (1) ◽  
pp. 77
Author(s):  
Mahadzir Ismail ◽  
Saliza Sulaiman ◽  
Hasni Abdul Rahim ◽  
Nordiana Nordin

The Financial Master Plan (2001- 2010) aims to enhance the capacity of banking industry so that higher effic iency and productivity can be reaped in the future. This study seeks to determine the impact of merger on the efficiency and productivity ofcommercial banks in Malaysia for the period 1995 until 2005. The study uses a non-parametric approach, nam ely DEA (data envelopment analysis?) to estimate the efficiency scores and to construct the Malmquist productivity index. To enable this estimation, three bank inputs and outputs are used. Amongst the findings are those banks exhibit higher efficiency score after the merger and thefo reign banks are more efficient than the local banks. Productivity of the banks is calculated in both periods, before and after the merger: The results show that, it is the local banks that have improved the most after the merger. The main source of productivity is technical change or innovation. The findings support the existing policy of having larger domestic banks in term of size.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4269
Author(s):  
Luigi Aldieri ◽  
Jonas Grafström ◽  
Concetto Paolo Vinci

The purpose of this paper is to establish if Marshallian and Jacobian knowledge spillovers affect job creation in the green energy sector. Whether these two effects exist is important for the number of jobs created in related fields and jobs pushed away in other sectors. In the analysis, the production efficiency, in terms of jobs and job spillovers, from inventions in solar, wind and energy efficiency, is explored through data envelopment analysis (DEA), based on the Malmquist productivity index, and tobit regression. A panel dataset of American and European firms over the period of 2002–2017 is used. The contribution to the literature is to show the role of the spillovers from the same technology sector (Marshallian externalities), and of the spillovers from more diversified activity (Jacobian externalities). Since previous empirical evidence concerning the innovation effects on the production efficiency is yet weak, the paper attempts to bridge this gap. The empirical findings suggest negative Marshallian externalities, while Jacobian externalities have no statistical impact on the job creation process. The findings are of strategic importance for governments who are developing industrial strategies for renewable energy.


1985 ◽  
Vol 107 (4) ◽  
pp. 267-269 ◽  
Author(s):  
S. Z. Wu ◽  
D. N. Wormley ◽  
D. Rowell ◽  
P. Griffith

An evaluation of systems for control of fossil fuel power plant boiler and stack implosions has been performed using computer simulation techniques described in a companion paper. The simulations have shown that forced and induced draft fan control systems and induced draft fan bypass systems reduce the furnace pressure excursions significantly following a main fuel trip. The limitations of these systems are associated with actuator range and response time and stack pressure excursions during control actions. Preliminary study suggests that an alternative control solution may be achieved by discharging steam into the furnace after a fuel trip.


2020 ◽  
Vol 117 (24) ◽  
pp. 13300-13307 ◽  
Author(s):  
Sourish Basu ◽  
Scott J. Lehman ◽  
John B. Miller ◽  
Arlyn E. Andrews ◽  
Colm Sweeney ◽  
...  

We report national scale estimates of CO2emissions from fossil-fuel combustion and cement production in the United States based directly on atmospheric observations, using a dual-tracer inverse modeling framework and CO2andΔ14CO2measurements obtained primarily from the North American portion of the National Oceanic and Atmospheric Administration’s Global Greenhouse Gas Reference Network. The derived US national total for 2010 is 1,653 ± 30 TgC yr−1with an uncertainty (1σ) that takes into account random errors associated with atmospheric transport, atmospheric measurements, and specified prior CO2and14C fluxes. The atmosphere-derived estimate is significantly larger (>3σ) than US national emissions for 2010 from three global inventories widely used for CO2accounting, even after adjustments for emissions that might be sensed by the atmospheric network, but which are not included in inventory totals. It is also larger (>2σ) than a similarly adjusted total from the US Environmental Protection Agency (EPA), but overlaps EPA’s reported upper 95% confidence limit. In contrast, the atmosphere-derived estimate is within1σof the adjusted 2010 annual total and nine of 12 adjusted monthly totals aggregated from the latest version of the high-resolution, US-specific “Vulcan” emission data product. Derived emissions appear to be robust to a range of assumed prior emissions and other parameters of the inversion framework. While we cannot rule out a possible bias from assumed prior Net Ecosystem Exchange over North America, we show that this can be overcome with additionalΔ14CO2measurements. These results indicate the strong potential for quantification of US emissions and their multiyear trends from atmospheric observations.


2019 ◽  
Vol 11 (9) ◽  
pp. 1117 ◽  
Author(s):  
Haopeng Zhang ◽  
Qin Deng

The frequent hazy weather with air pollution in North China has aroused wide attention in the past few years. One of the most important pollution resource is the anthropogenic emission by fossil-fuel power plants. To relieve the pollution and assist urban environment monitoring, it is necessary to continuously monitor the working status of power plants. Satellite or airborne remote sensing provides high quality data for such tasks. In this paper, we design a power plant monitoring framework based on deep learning to automatically detect the power plants and determine their working status in high resolution remote sensing images (RSIs). To this end, we collected a dataset named BUAA-FFPP60 containing RSIs of over 60 fossil-fuel power plants in the Beijing-Tianjin-Hebei region in North China, which covers about 123 km 2 of an urban area. We compared eight state-of-the-art deep learning models and comprehensively analyzed their performance on accuracy, speed, and hardware cost. Experimental results illustrate that our deep learning based framework can effectively detect the fossil-fuel power plants and determine their working status with mean average precision up to 0.8273, showing good potential for urban environment monitoring.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022020
Author(s):  
Jiahuan Yu ◽  
Xiaofeng Zhang

Abstract With the development of the nuclear energy industry and the increasing demand for environmental protection, the impact of nuclear power plant radiation on the environment has gradually entered the public view. This article combs the nuclear power plant radiation environmental management systems of several countries, takes the domestic and foreign management of radioactive effluent discharge from nuclear power plants as a starting point, analyses and compares the laws and standards related to radioactive effluents from nuclear power plants in France, the United States, China, and South Korea. In this paper, the management improvement of radioactive effluent discharge system of Chinese nuclear power plants has been discussed.


Sign in / Sign up

Export Citation Format

Share Document