scholarly journals Research and Application of Biochar in Soil CO2 Emission, Fertility, and Microorganisms: A Sustainable Solution to Solve China’s Agricultural Straw Burning Problem

2020 ◽  
Vol 12 (5) ◽  
pp. 1922 ◽  
Author(s):  
Huanhuan Wang ◽  
Tianbao Ren ◽  
Huijuan Yang ◽  
Yuqing Feng ◽  
Huilin Feng ◽  
...  

This study aimed to explore a new way to address the burning of agricultural waste in China while achieving the sustainable use of it. Three agricultural wastes (Wheat straw, peanut shell, and rice husk) were slowly pyrolyzed into biochar, which was subsequently added to the soil to reduce CO2 emissions from the soil, and to improve soil fertility as well as microbial community structure. The biochar and raw materials were added to the soil and cultured under controlled conditions, and then the CO2 emissions produced from the mixing. At the same time, this study used pot experiments to determine the effects of biochar on tobacco soil physical and chemical properties and, therefore, the microbial communities of the soil. This study suggests that (1) biochar can effectively reduce soil CO2 emission rate. Compared with the control, peanut shell biochar could reduce the total CO2 emissions of soil by 33.41%, and the total CO2 emissions of wheat straw biochar treatment was 90.25% lower than that of wheat straw treatment. (2) The soil’s physical and chemical properties were improved. The soil bulk density of wheat straw biochar treatment kept 34.57% lower than that of the control as well as 21.15% lower than that of wheat straw treatment. The soil’s organic carbon of peanut shell biochar treatment was 87.62% more than that of peanut shell treatment. (3) Biochar changed soil microbial community structure. (4) Biochar is suitable for tobacco growth. Peanut husk biochar significantly increased the total biomass of tobacco, and wheat straw biochar significantly increased tobacco root vigor. This study concluded that processing Chinese agricultural waste into biochar and adding it to the soil instead of burning it directly would be an effective means to reduce greenhouse gas emissions, to improve soil, and to promote crop growth.

2012 ◽  
Vol 241-244 ◽  
pp. 204-207
Author(s):  
Nongnaphat Khosavithitkul ◽  
Kenneth J. Haller ◽  
Nares Chuersuwan ◽  
Thananchai Wannasook

One hundred and thirty-seven samples of agricultural residue were taken from the study area of forty subdistricts in twenty districts of ten provines in the Northeastern region of Thailand. The samples were analyzed for major physical and chemical properties and subjected to simulated burning. Rice straw had the highest dry weight and bagasse the lowest. Bagasse had the highest moisture content and the highest carbon content. Results from simulated burning found that sugarcane leaf emitted more CO2 than the other residues. Weight loss on combustion was in the range of 75-92 %, and the simulated burn of agricultural residues showed CO2 emission values at 67% of the IPCC values.


2020 ◽  
Author(s):  
Chronis Kolovos ◽  
Maria Doula ◽  
Stamatios Kavasilis ◽  
Georgios Zagklis ◽  
Gerasimos Tsitselis ◽  
...  

<p>Soil application of raw winery wastes is a procedure of doubtful appropriateness, mainly because of waste properties, i.e. very acidic pH; high electrical conductivity; and high content of polyphenols. The disposal of winery waste on soils may cause various environmental and health hazards as for example soil overloading with polyphenols and salts, phytotoxicity to plants, odor nuisance etc. Pathogens, which may still be present in the decomposed material could spread plants and soil diseases, while waste piles attract insects, pests, domestic rodents and wildlife which may threaten public and animal health. Despite these facts, many wine producers discharge winery waste to the nearby agricultural or forest ecosystems, without treatment although this type of agricultural waste could be a significant source of organic matter and nutrients.</p><p> </p><p>In general, degradation of winery waste is a slow procedure which becomes even slower under the xerothermic climatic conditions in Greece, which may slow down the microbially mediated decomposition of organic matter and nutrients cycling; degradation of winery waste piles takes more than 5 years to be completed naturally. However, the final products are of doubtful appropriateness for fertilization use, mainly because of low quality organic matter and low nutrients content (lost mainly due to the exposure of piles to uncontrolled environmental conditions for years).</p><p> </p><p>This study aims to highlight the advantages of composting winery wastes by using also other agricultural wastes and additives as feedstock to produce a safe and environment friendly compost, appropriate for application to agricultural ecosystems. For this a 41 hectares vineyard in North Greece of about 400 tn grapes yield annually and generation of approximately 100 tn of waste was selected. Winery waste was collected after harvesting and wine-making period of 2018 and composted with cow manure, wheat straw and clinoptilolite up to 5%.</p><p> </p><p>Composting phase lasted 5 months, and during this period the pile was monitored as regard temperature, moisture and oxygen content. After composting completion, the final product was fully characterized in terms of its physical and chemical properties, considering national legislation organic materials reuse on soils. The outcomes of this study show a great potential for managing such waste types by composting using clinoptilolite in the feedstock materials since the final product has suitable physical and chemical properties for many crops, i.e. slight alkaline pH, low electrical conductivity, low polyphenol content and high content of available nutrient, therefore can be used as soil amendment or organic fertilizer.</p>


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


Sign in / Sign up

Export Citation Format

Share Document