scholarly journals Uncertainty Analysis of Embedded Energy and Greenhouse Gas Emissions Using BIM in Early Design Stages

2020 ◽  
Vol 12 (7) ◽  
pp. 2633 ◽  
Author(s):  
Patricia Schneider-Marin ◽  
Hannes Harter ◽  
Konstantin Tkachuk ◽  
Werner Lang

With current efforts to increase energy efficiency and reduce greenhouse gas (GHG) emissions of buildings in the operational phase, the share of embedded energy (EE) and embedded GHG emissions is increasing. In early design stages, chances to influence these factors in a positive way are greatest, but very little and vague information about the future building is available. Therefore, this study introduces a building information modeling (BIM)-based method to analyze the contribution of the main functional parts of buildings to find embedded energy demand and GHG emission reduction potentials. At the same time, a sensitivity analysis shows the variance in results due to the uncertainties inherent in early design to avoid misleadingly precise results. The sensitivity analysis provides guidance to the design team as to where to strategically reduce uncertainties in order to increase precision of the overall results. A case study shows that the variability and sensitivity of the results differ between environmental indicators and construction types (wood or concrete). The case study contribution analysis reveals that the building’s structure is the main contributor of roughly half of total GHG emissions if the main structural material is reinforced concrete. Exchanging reinforced concrete for a wood structure reduces total GHG emissions by 25%, with GHG emissions of the structure contributing 33% and windows 30%. Variability can be reduced systematically by first reducing vagueness in geometrical and technical specifications and subsequently in the amount of interior walls. The study shows how a simplified and fast BIM-based calculation provides valuable guidance in early design stages.

2020 ◽  
Vol 32 (6) ◽  
pp. 837-847
Author(s):  
Martin Jurkovič ◽  
Tomáš Kalina ◽  
Tomáš Skrúcaný ◽  
Piotr Gorzelanczyk ◽  
Vladimír Ľupták

The aim of the paper is to assess the possibility of decreasing the chosen environmental indicators like energy consumption, greenhouse gas (GHG) production and other exhaust pollutants in the selected region in Slovakia by introducing Liquefied Natural Gas (LNG) buses into bus transport. The assessment is carried out by comparing the consumption and emissions of current buses (EURO 2) in real operation, with potential buses (EURO 6) and with pilot LNG buses testing on the same lines. Comparison took place under the same conditions over the same period. The study measures the energy consumption and GHG production per bus. The research paper also compares two methodologies of calculation. The first calculation is according to the European Standard EN 16258: 2012 which specifies the general methodology for evaluation and declaration of energy consumption and GHG emissions (all services - cargo, passengers or both). The second calculation is according to the Handbook of Emission Factors for Road Transport (HBEFA). The results of the calculation are compared  by both methods, and the most suitable version of the bus in terms of GHG emissions is proposed.


Author(s):  
Rachel Shin ◽  
Cory Searcy

A growing number of companies in the brewery industry have made commitments to measure and reduce their greenhouse gas (GHG) emissions. However, many brewers, particularly craft brewers with relatively low rates of production, have struggled to meet these commitments. The purpose of this research was to investigate the challenges and benefits of measuring and reducing GHG emissions in the craft brewery industry. The research was conducted in Ontario, Canada, which has seen strong recent growth in the craft brewery industry. A case study and semi-structured interviews among Ontario Craft Brewers were conducted. The case study found that indirect (scope 3 emissions under the WBCSD & WRI GHG Protocol) GHG sources accounted for 46.4% of total GHGs, with major sources from barley agriculture, malted barley transportation, and bottle production. Direct emissions (scope 1) accounted for only 14.9% of GHGs, while scope 2 emissions, comprised mainly of energy consumption, accounted for 38.7% of GHGs. The case study and interviews found that the main challenges in calculating brewery GHGs are secondary data availability, technical knowledge, and finances. The study also found that the main benefits for Ontario breweries to measure their GHGs include sustainability marketing and preserving the environment. The interviews also found a poor understanding of carbon regulation among Ontario Craft Brewers, which is interesting considering that Ontario implemented a provincial cap and trade program in 2017.


2019 ◽  
Vol 45 (4) ◽  
pp. 441-449
Author(s):  
Riham A. Mohsen ◽  
Bassim Abbassi ◽  
Animesh Dutta ◽  
David Gordon

More light is being shed continually on the environmental impacts of municipal solid waste due to the increasing amounts of waste generated and the related greenhouse gas emissions. Emissions from MSW account for 20% of Canadian greenhouse gas (GHG) emissions and accordingly, waste legislation in Ontario demands high waste recovery and a moving towards a circular economy. This study evaluates the current municipal solid waste management in the City of Guelph and assesses possible alternative scenarios based on the associated GHG emissions. Waste Reduction Model (WARM) that was developed by the US-EPA has been used to quantify the GHG emissions produced over the entire life cycle of the MSW management scenario. Sensitivity analysis was also conducted to investigate the influence of some scenarios on the overall GHG emissions. It has been found that one ton of landfilled waste generates approximately 0.39 ton of carbon dioxide equivalent (CO2Eq). It was also found that the current solid waste scenario has a saving of 36086 million ton of CO2Eq (MCO2Eq). However, the results showed that the scenario with enhanced waste-to-energy, reduction at source and recycling has resulted in a high avoided emissions (0.74 kg CO2Eq/kg MSW). The anaerobic Digestion scenario caused the lowest avoided emissions of 0.39 kg CO2Eq/kg MSW. The net avoided emissions for reduction at source scenario were found to be the same as that found by the current scenario (0.4 kg CO2Eq/kg MSW). The sensitivity analysis of both reduction at source and recycling rates show a linear inverse proportional relationship with total GHG emissions reduction.


2017 ◽  
Vol 4 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Guillaume Lamé ◽  
Bernard Yannou ◽  
François Cluzel

While the diffusion and evaluation of healthcare innovations receive a lot of attention, the early design stages are less studied and potential innovators lack methods to identify where new innovations are necessary and to propose concepts relevant to users. To change this, we propose a structured methodology, Radical Innovation Design (RID), which supports designers who want to work on the unstated needs of potential end users in order to create superior value. In this article, the first part of RID is introduced with its two subprocesses: Problem Design and Knowledge Design. In this first period, RID guides innovators to systematically explore users’ problems and evaluate which ones are most pressing in terms of innovation, taking into account existing solutions. The result is an ambition perimeter, composed of a set of value buckets, that is, important usage situations where major problems are experienced and the current solutions provide little or no relief. The methodology then moves on to Solution Design and Business Design (which are not detailed in this article) to address the value buckets identified. With its emphasis on problem exploration, RID differs from methods based on early prototyping. The RID methodology has been validated in various industrial sectors and is well-adapted for healthcare innovation. To exemplify the methodology, we present a case study in dental imagery performed by 10 students in 8 weeks. This example demonstrates how RID favours efficiency in Problem Design and allows designers to explore unaddressed and sometimes undeclared user needs.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
E. Jäppinen ◽  
O.-J. Korpinen ◽  
T. Ranta

This study presents two case studies of 100 GWh of forest biomass supply: Rovaniemi in northern Finland and Mikkeli in south-eastern Finland. The study evaluates the effects of local biomass availability and road network properties on the greenhouse gas (GHG) emissions of these two supply chains. The local forest biomass availability around the case study locations, truck transportation distances, and road network properties were analyzed by GIS methods to produce accurate and site-dependent data for the transportation emission calculations. The GHG emissions were then assessed by LCA methods. The total transportation distance to Rovaniemi was 22% larger than to Mikkeli, but the transportation derived GHG emissions were 31% larger. The results highlight the fact that local conditions should always be taken into account when assessing the sustainability of biomass-based energy production.


2021 ◽  
Author(s):  
Rachel Shin ◽  
Cory Searcy

A growing number of companies in the brewery industry have made commitments to measure and reduce their greenhouse gas (GHG) emissions. However, many brewers, particularly craft brewers with relatively low rates of production, have not made such commitments. The purpose of this research was to investigate the challenges and benefits of measuring and reducing GHG emissions in the craft brewery industry. The research was conducted in Ontario, Canada, which has seen strong recent growth in the craft brewery industry. A case study and semi-structured interviews among Ontario Craft Brewers were conducted. The case study found that indirect (scope 3 GHGs under the WBCSD & WRI GHG Protocol) GHG sources accounted for 46.4% of total GHGs, with major sources from barley agriculture, malted barley transportation, and bottle production. Direct emissions (scope 1) accounted for only 14.9% of GHGs, while scope 2 emissions, comprised mainly of energy consumption, accounted for 38.7% of GHGs. The case study used case company primary data, and secondary data such as emission factors from external sources. The case study and interviews found that the main challenges in calculating brewery GHGs are secondary data availability, technical knowledge, and finances. The semi-structured interviews, which used prepared interview questions and probes to encourage follow-up answers, also found that the main benefits for Ontario breweries to measure their GHGs include sustainability marketing and preserving the environment. The interviews also found a poor understanding of carbon regulation among Ontario Craft Brewers, which is interesting considering that Ontario implemented a provincial cap and trade program in 2017.


2020 ◽  
Vol 143 ◽  
pp. 01008
Author(s):  
Mengyun Li ◽  
Kun Lu ◽  
Hongyu Wang ◽  
Sai Wang

More and more attention has been paid to the application of Building Information Modeling (BIM) in the field of greenhouse-gas (GHG) emissions in Architecture, Engineering and Construction (AEC). However, systematic analysis and visualization of its development trend have not been carried out. This paper combined digital statistical method and scientometrics to analyse major documents published in the Scopus database from 2008 to September 2019 and discussed the development trend, the main journals co-citation and keywords co-occurrence of this field. And then main challenges and future research were summarized by content analysis. The results show that: (1) the number of articles related to integrating BIM with GHG emissions has increased significantly in AEC, which deserves more and more scholars to study in this field; (2) top cited journals mainly focus on built environment, BIM and clean technology; (3) BIM and Life Cycle Assessment (LCA) are the mainstream issues in the calculation, analysis and decisionmaking of GHG emissions. This review provides status quo and existing main challenges of knowledge system of BIM applied to GHG emissions in AEC, and also offers inspiration for future research.


2011 ◽  
Vol 159 (11) ◽  
pp. 3156-3161 ◽  
Author(s):  
J.-L. Drouet ◽  
N. Capian ◽  
J.-L. Fiorelli ◽  
V. Blanfort ◽  
M. Capitaine ◽  
...  

2019 ◽  
Vol 11 (21) ◽  
pp. 6027 ◽  
Author(s):  
Reina E. Vellinga ◽  
Mirjam van de Kamp ◽  
Ido B. Toxopeus ◽  
Caroline T. M. van Rossum ◽  
Elias de Valk ◽  
...  

Food consumption patterns affect the environment as well as public health, and monitoring is needed. The aim of this study was to evaluate the Dutch food consumption patterns for environmental (greenhouse gas (GHG) emissions and blue water use) and health aspects (Dutch Healthy Diet index 2015), according to age, gender, and consumption moments. Food consumption data for 4313 Dutch participants aged 1 to 79 years were assessed in 2012 to 2016, by two non-consecutive 24-h recalls. The environmental impact of foods was quantified using a life cycle assessment for, e.g., indicators of GHG emissions and blue water use. The healthiness of diet, operationalized by the Dutch Healthy Diet index 2015, was assessed for 2078 adults aged ≥19 years. The average daily diet in the Netherlands was associated with 5.0 ± 2.0 kg CO2-equivalents of GHG emissions and 0.14 ± 0.08 m3 of blue water use. Meat, dairy and non-alcoholic beverages contributed most to GHG emissions, and non-alcoholic beverages, fruits, and meat to blue water use. More healthy diets were associated with a lower GHG emission and higher blue water use. Different associations of environmental indicators (GHG emissions and blue water use) with health aspects of diets need to be considered when aligning diets for health and sustainability.


Sign in / Sign up

Export Citation Format

Share Document