scholarly journals Usage-driven problem design for radical innovation in healthcare

2017 ◽  
Vol 4 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Guillaume Lamé ◽  
Bernard Yannou ◽  
François Cluzel

While the diffusion and evaluation of healthcare innovations receive a lot of attention, the early design stages are less studied and potential innovators lack methods to identify where new innovations are necessary and to propose concepts relevant to users. To change this, we propose a structured methodology, Radical Innovation Design (RID), which supports designers who want to work on the unstated needs of potential end users in order to create superior value. In this article, the first part of RID is introduced with its two subprocesses: Problem Design and Knowledge Design. In this first period, RID guides innovators to systematically explore users’ problems and evaluate which ones are most pressing in terms of innovation, taking into account existing solutions. The result is an ambition perimeter, composed of a set of value buckets, that is, important usage situations where major problems are experienced and the current solutions provide little or no relief. The methodology then moves on to Solution Design and Business Design (which are not detailed in this article) to address the value buckets identified. With its emphasis on problem exploration, RID differs from methods based on early prototyping. The RID methodology has been validated in various industrial sectors and is well-adapted for healthcare innovation. To exemplify the methodology, we present a case study in dental imagery performed by 10 students in 8 weeks. This example demonstrates how RID favours efficiency in Problem Design and allows designers to explore unaddressed and sometimes undeclared user needs.

2020 ◽  
Vol 12 (7) ◽  
pp. 2633 ◽  
Author(s):  
Patricia Schneider-Marin ◽  
Hannes Harter ◽  
Konstantin Tkachuk ◽  
Werner Lang

With current efforts to increase energy efficiency and reduce greenhouse gas (GHG) emissions of buildings in the operational phase, the share of embedded energy (EE) and embedded GHG emissions is increasing. In early design stages, chances to influence these factors in a positive way are greatest, but very little and vague information about the future building is available. Therefore, this study introduces a building information modeling (BIM)-based method to analyze the contribution of the main functional parts of buildings to find embedded energy demand and GHG emission reduction potentials. At the same time, a sensitivity analysis shows the variance in results due to the uncertainties inherent in early design to avoid misleadingly precise results. The sensitivity analysis provides guidance to the design team as to where to strategically reduce uncertainties in order to increase precision of the overall results. A case study shows that the variability and sensitivity of the results differ between environmental indicators and construction types (wood or concrete). The case study contribution analysis reveals that the building’s structure is the main contributor of roughly half of total GHG emissions if the main structural material is reinforced concrete. Exchanging reinforced concrete for a wood structure reduces total GHG emissions by 25%, with GHG emissions of the structure contributing 33% and windows 30%. Variability can be reduced systematically by first reducing vagueness in geometrical and technical specifications and subsequently in the amount of interior walls. The study shows how a simplified and fast BIM-based calculation provides valuable guidance in early design stages.


Author(s):  
David Ríos-Zapata ◽  
Ricardo Duarte ◽  
Jérôme Pailhès ◽  
Ricardo Mejía-Gutiérrez ◽  
Michel Mesnard

2019 ◽  
Vol 12 (6) ◽  
pp. 365-375 ◽  
Author(s):  
Floriane Laverne ◽  
Raphael Marquardt ◽  
Frédéric Segonds ◽  
Imade Koutiri ◽  
Nicolas Perry

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1398
Author(s):  
Xinfang Wang ◽  
Rosie Day ◽  
Dan Murrant ◽  
Antonio Diego Marín ◽  
David Castrejón Botello ◽  
...  

To improve access to affordable, reliable and sustainable energy in rural areas of the global south, off-grid systems using renewable generation and energy storage are often proposed. However, solution design is often technology-driven, with insufficient consideration of social and cultural contexts. This leads to a risk of unintended consequences and inappropriate systems that do not meet local needs. To address this problem, this paper describes the application of a capabilities-led approach to understanding a community’s multi-dimensional energy poverty and assessing their needs as they see them, in order to better design suitable technological interventions. Data were collected in Tlamacazapa, Mexico, through site visits and focus groups with men and women. These revealed the ways in which constrained energy services undermined essential capabilities, including relating to health, safety, relationships and earning a living, and highlighted the specific ways in which improved energy services, such as lighting, cooking and mechanical power could improve capabilities in the specific context of Tlamacazapa. Based on these findings, we propose some potential technological interventions to address these needs. The case study offers an illustration of an assessment method that could be deployed in a variety of contexts to inform the design of appropriate technological interventions.


Author(s):  
Daniela Schmid ◽  
Neville A. Stanton

Systems thinking methods have evolved into a popular toolkit in Human Factors to analyze complex sociotechnical systems at early design stages, such as future airliners’ single pilot operations (SPO). A quantitative re-analysis of studies from a systematic literature review (Schmid & Stanton, 2019b) was conducted to categorically assess their contributions to researching SPO and to fitting their systems thinking methods to contemporary Human Factors problems. Although only 15 of 79 publications applied systems thinking methods to operational, automation, and the pilot incapacitation issue(s) of SPO, these studies provided a comprehensive concept of operations that is able to deal with many issues of future single-piloted airliners. These theoretical models require further evaluation by looking at the empirical instances of system behavior. Finally, the hierarchical structures in system’s development and operations from systems thinking enable Human Factors professionals and researchers to approach SPO systematically.


2021 ◽  
Vol 11 (10) ◽  
pp. 4617
Author(s):  
Daehee Park ◽  
Cheoljun Lee

Because smartphones support various functions, they are carried by users everywhere. Whenever a user believes that a moment is interesting, important, or meaningful to them, they can record a video to preserve such memories. The main problem with video recording an important moment is the fact that the user needs to look at the scene through the mobile phone screen rather than seeing the actual real-world event. This occurs owing to uncertainty the user might feel when recording the video. For example, the user might not be sure if the recording is of high-quality and might worry about missing the target object. To overcome this, we developed a new camera application that utilizes two main algorithms, the minimum output sum of squared error and the histograms of oriented gradient algorithms, to track the target object and recognize the direction of the user’s head. We assumed that the functions of the new camera application can solve the user’s anxiety while recording a video. To test the effectiveness of the proposed application, we conducted a case study and measured the emotional responses of users and the error rates based on a comparison with the use of a regular camera application. The results indicate that the new camera application induces greater feelings of pleasure, excitement, and independence than a regular camera application. Furthermore, it effectively reduces the error rates during video recording.


Author(s):  
Jacqueline B. Barnett

The application of ergonomics is important when considering the built environment. In order to create an environment where form follows function, a detailed understanding of the tasks performed by the individuals who will live and work in the facility is required. Early involvement in the project is key to maximizing the benefit of ergonomics. At Sunnybrook and Women's College Health Sciences Centre in Toronto, Canada, this early intervention was embraced during the design process of a behavioural care unit for aggressive patients. The ergonomist was involved in three phases of design; user needs analysis, block schematics and detailed design. The user needs and characteristics were established using a combination of focus groups, interviews, direct observation, task analysis and critique of current working environments. The challenge was to present the information to the design team in a useful manner. The format chosen was a modification of Userfit (Poulson 1996) that outlined the various characteristics of the patient group and the design consequences with “what does this mean for me” statements. During the block schematics phase an iterative design process was used to ensure that the ergonomic principles and the user needs were incorporated into the design. Ergonomic input was used in determining the room sizes and layout and to ensure work processes were considered. Simple mock-ups and anthropometric data assisted in illustrating the need for design changes. Examples that highlight the areas of greatest impact of ergonomic intervention include the patient bathrooms, showers and tub room. Significant changes were made to the design to improve the safety of the work and living space of the end users. One of the greatest challenges was having an appreciation for the individual goals of the team members. Ensuring there was adequate space for equipment and staff often resulted in recommendations for increased space. This in turn would increase the cost of the project. The architect and, later in the project, the engineer had goals of bringing the project in on budget. The final design was very much a team effort and truly die result of an iterative process. The sum of the individual contributions could not match the combined efforts. It was only through the ergonomic contributions in this early design phase that the needs of the staff, patients and families could be so well represented. The success of the iterative process provides the foundation for bringing ergonomics considerations into the early design stages of future projects.


Sign in / Sign up

Export Citation Format

Share Document