scholarly journals Evaluation of Cost Competitiveness of Electric Vehicles in Malaysia Using Life Cycle Cost Analysis Approach

2020 ◽  
Vol 12 (13) ◽  
pp. 5303
Author(s):  
Siti Indati Mustapa ◽  
Bamidele Victor Ayodele ◽  
Waznatol Widad Mohamad Ishak ◽  
Freida Ozavize Ayodele

The need to mitigate CO2 emissions from the transportation sector has necessitated the adoption of electric vehicles (EVs) and other forms of alternative vehicles. Despite the global rise of EVs demand as a complementary means of green transportations, the level of adoption in Malaysia is still not encouraging. Therefore, this study aimed to investigate the cost competitiveness of EVs in comparison with Hybrid Electric Vehicles (HEVs) and an Internal Combustion Vehicle (ICV) based on Malaysia scenarios. Using the existing data in Malaysia, life cost analysis (LCC) of two EVs was computed and compared with HEVs and ICVs. The study shows that Nissan leaf and BMW i3s EVs with LCC of $1.75 and $2.5 per km are not cost-competitive based on prevalent data available in Malaysia compared to the HEVs and ICV. Based on the sensitivity analysis, changes in the components of the operating costs significantly influence the accumulated cost of ownership of the EVs whereas the cost of ownership of the HEVs and ICVs did not experience any significant influence. The findings from this study could serve as bases for policymakers to formulate appropriate policies and strategies to improve the competitiveness of EVs in Malaysia.

2019 ◽  
Vol 9 (3) ◽  
pp. 440-456
Author(s):  
Seyed Ehsan Zahed ◽  
Sirwan Shahooei ◽  
Ferika Farooghi ◽  
Mohsen Shahandashti ◽  
Siamak Ardekani

Purpose The purpose of this paper is to conduct life-cycle cost analysis of a short-haul underground freight transportation (UFT) system for the Dallas Fort Worth international airport. Design/methodology/approach The research approach includes: identifying the cost components of the proposed airport UFT system; estimating life-cycle cost (LCC) of system components using various methods; determining life-cycle cash flows; evaluating the reliability of the results using sensitivity analysis; and assessing the validity of the results using analogues cases. Findings Although the capital cost of constructing an airport UFT system seems to be the largest cost of such innovative projects, annual costs for running the system are more significant, taking a life-cycle perspective. System administrative cost, tunnel operation and maintenance, and tunnel construction cost are the principle cost components of the UFT system representing approximately 46, 24 and 19 percent of the total LCC, respectively. The shipping cost is estimated to be $4.14 per ton-mile. Although this cost is more than the cost of transporting cargos by trucks, the implementation of UFT systems could be financially justified considering their numerous benefits. Originality/value This paper, for the first time, helps capital planners understand the LCC of an airport UFT system with no or limited past experience, and to consider such innovative solutions to address airport congestion issues.


Author(s):  
Erdem Coleri ◽  
Yuqi Zhang ◽  
Blaine M. Wruck

Use of reclaimed asphalt pavements (RAP) and recycled asphalt shingles (RAS) in asphalt paving, although considered as sustainable, is a practice that agencies are reluctant to employ because of the unpredictability of asphalt mixes containing recycled materials. The asphalt binder in RAP/RAS is aged and stiffened, which reduces ductility of the pavement. Consequentially, a pavement can exhibit unsatisfactory fatigue performance and have the potential for early cracking failure. Although methods exist to counteract the brittle behavior of pavements containing RAP/RAS (namely binder-grade bumping, binder-grade dumping and high binder content), they are not accounted for in mechanistic-empirical (ME) pavement design. Additionally, the cost benefits of using RAP/RAS in pavements are not easily calculated. For these reasons, characterization of fatigue performance for asphalt pavements containing RAP/RAS in ME design software needs to be accomplished and a life-cycle cost analysis (LCCA) framework for pavements containing RAP/RAS needs to be developed so that agencies can make informed decisions about RAP/RAS use in asphalt mixtures. In this study, laboratory test results for asphalt mixtures with different combinations of RAP/RAS contents, binder contents, and binder types were used to calculate ME pavement model coefficients to perform forward calculations to determine pavement performance. Using predicted performance from ME models, LCCAs were conducted to determine the cost benefits of using binder-grade bumping/dumping and high binder content in Oregon asphalt mixtures. These strategies are expected to increase RAP/RAS use in asphalt mixtures, reduce life-cycle costs, improve the cracking performance and encourage widespread use of RAP/RAS asphalt mixtures.


Facilities ◽  
2017 ◽  
Vol 35 (5/6) ◽  
pp. 303-318 ◽  
Author(s):  
Debra Harris ◽  
Lori Fitzgerald

Purpose The business case for facility expenditures is grounded in the knowledge that life-cycle economics is significant to the continued viability of the facility. The aim of this study is to develop an algorithm for life-cycle cost analysis (LCCA) and evaluate flooring products to inform decision makers about the long-term cost of ownership. Design/methodology/approach The protocol for executing an LCCA is defined by the National Institute of Standards and Technology, including defining the problem, identifying feasible alternatives and establishing common assumptions and parameters, as well as acquiring financial information. Data were provided by an independent third-party source. Findings The results of this study are twofold: assess functionally equivalent flooring alternatives to determine the best financial value and develop a replicable protocol and algorithm for LCCA. The study found that modular carpet was the best financial solution. As a tool for decision makers, this LCCA informs asset management about the long-term cost of ownership, providing a protocol for making practical, informed decisions for the lowest cost solution for functionally equivalent alternatives. Research limitations/implications Projecting LCCA beyond 15 years may have limited value based on potential changes in the financial climate. Further research should focus on the implications of changes in the discount rate over time and testing the algorithm on other building systems. Practical implications Maintenance costs are considerable when compared to initial cost of flooring. Equipment costs have a significant impact on long-term cost of ownership. Using LCCA to inform specifications and to determine the best solution for a building system such as flooring provides an evidence-based process for building design and facility management. Social implications Life-cycle costs have a significant impact on the financial health of an organization. Using LCCA to make informed decisions about facility design and specifications may contribute to increased financial stability and resources to benefit the organization’s long term goals. Originality/value This study contributes an algorithm instrument for buildings and building systems. The flooring tested with this protocol provides evidence to inform flooring selection based on lowest cost while considering other factors that inform appropriate selection of flooring materials.


Author(s):  
Sumanth Kalluri ◽  
Pasi Lautala ◽  
Robert Handler

Freight transportation of goods and commodities is a necessity and is often a significant portion of the overall investment in industrial development, especially in the natural resource industry. The economic costs of developing infrastructure have long been factored into the project costs, but environmental or social impacts have received less attention. In addition, alternative transportation modes are rarely compared from both economic and environmental perspectives. This paper performs a Life Cycle Assessment (LCA) for truck-only, multimodal and rail transportation options to transport ore and concentrate. In this paper, LCA is performed in SimaPro for construction/manufacturing, operations, maintenance, and end of life phases to obtain the overall Global Warming Potential (GWP) in terms of kilogram equivalents of CO2 (kg CO2eq). After emissions from alternative options have been defined, the cost of each option can be investigated through Life Cycle Cost Analysis (LCCA) This paper also discusses the past work on LCCA and its application to transportation projects. The final part provides a methodology to convert the emission results from LCA for integration with the costs from LCCA.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Kh. S. Karimov ◽  
M. Abid ◽  
S. I. Islomov ◽  
N. H. Karimova ◽  
M. W. Al-Grafi

ABSTRACT: In this paper life-cycle cost analysis of three biogas digesters is presented. Results show that the cost of biogas depends on the construction of digesters, sizes of methane tank and possibility of heating of the slurry. Biogas and natural gas costs calaculated are observed and found to be comparable. It is recommended that the biogas digesters can be constructed and installed, in principle, for every family and there is no need to built long gas pipe lines. ABSTRAK: Kertaskerja ini membentangkan analisis kos kitar hayat tiga pencerna biogas. Keputusan menunjukkan kos biogas bergantung kepada pembinaan pencerna, saiz tangki metana dan kemungkinan pemanasan buburan. Pengiraan kos biogas dan gas asli diambil kira dan ianya didapati setanding. Adalah disarankan pencerna biogas boleh dibina dan dipasang secara teorinya, bagi setiap keluarga tanpa memerlukan pembinaan paip gas yang panjang.


2020 ◽  
Vol 12 (6) ◽  
pp. 2387 ◽  
Author(s):  
Bamidele Victor Ayodele ◽  
Siti Indati Mustapa

The transportation sector has been reported as a key contributor to the emissions of greenhouse gases responsible for global warming. Hence, the need for the introduction of electric vehicles (EVs) into the transportation sector. However, the competitiveness of the EVs with the conventional internal combustion engine vehicles has been a bone of contention. Life cycle cost analysis (LCCA) is an important tool that can be employed to determine the competitiveness of a product in its early stage of production. This review examines different published articles on LCCA of EVs using Scopus and Web of Science databases. The time trend of the published articles from 2001 to 2019 was examined. Moreover, the LCC obtained from the different models of EVs were compared. There was a growing interest in research on the LCC of EVs as indicated by the upward increase in the number of published articles. A variation in the LCC of the different EVs studied was observed to depend on several factors. Based on the LCC, EVs were found not yet competitive with conventional internal combustion engine cars due to the high cost of batteries. However, advancement in technologies with incentives could bring down the cost of EV batteries to make it competitive in the future.


2015 ◽  
Vol 4 (4) ◽  
pp. 92 ◽  
Author(s):  
Debra D. Harris ◽  
Lori Fitzgerald

Objective: In this study, hard, resilient and soft flooring materials are compared using a building service life of 50 years, an established life span for healthcare facilities. The purpose of this study is to evaluate the life-cycle cost of flooring products and inform decision-makers about the long-term cost of ownership along with other key factors, such as safety, durability, and aesthetics.Methods: The protocol for executing an life-cycle cost analysis (LCCA) is defined by the National Institute of Standards and Technology (NIST), including defining the problem, identifying feasible alternatives, and establishing common assumptions and parameters, as well as acquiring financial information. Product information for the flooring materials that met inclusion criteria based on characteristics of the products consistent with use in healthcare facilities was acquired including maintenance, installation, warranty, and cost data. LCCA calculations recognize the time value of money and use discounting to project future value.Results: The results generated from the LCCA using present value to project future costs provide a useful tool for projecting costs over time for the purpose of planning operational and maintenance costs associated with the long-term investment of ownership. The findings suggest that soft flooring is more cost effective for initial purchase and installation, equipment assets, and maintenance over time of facilities.Conclusions: Cost is an important factor when considering flooring materials for healthcare facilities. Other factors to be considered are safety, durability and aesthetics, cleanliness, acoustics and sustainability to realize the overall return on investment. This study developed a tool for projecting costs of ownership for facility materials, in this case, flooring. The selection of flooring material has a significant impact on the cost of ownership over the life of the facility.


Sign in / Sign up

Export Citation Format

Share Document