scholarly journals Analysis of Problems Related to the Calculation of Flood Frequency Using Rainfall-Runoff Models: A Case Study in Poland

2020 ◽  
Vol 12 (17) ◽  
pp. 7187
Author(s):  
Dariusz Młyński

This work aimed to quantify how the different parameters of the Snyder model influence the errors in design flows. The study was conducted for the Kamienica Nowojowska catchment (Poland). The analysis was carried out according to the following stages: determination of design precipitation, determination of design hyetograph, sensitivity analysis of the Snyder model, and quality assessment of the Snyder model. Based on the conducted research, it was found that the Snyder model did not show high sensitivity to the assumed precipitation distribution. The parameters depending on the retention capacity of the catchment had much greater impact on the obtained flow values. The verification of the model quality showed a significant disproportion in the calculated maximum flow values with the assumed return period.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 601 ◽  
Author(s):  
Dariusz Młyński ◽  
Andrzej Wałęga ◽  
Tomasz Stachura ◽  
Grzegorz Kaczor

The aim of the work was to develop a new empirical model for calculating the peak annual flows of a given frequency of occurrence (QT) in the ungauged catchments of the upper Vistula basin in Poland. The approach to the regionalization of the catchment and the selection of the optimal form of the empirical model are indicated as a novelty of the proposed research. The research was carried out on the basis of observation series of peak annual flows (Qmax) for 41 catchments. The analysis was performed in the following steps: statistical verification of data; estimation of Qmax flows using kernel density estimation; determination of physiographic and meteorological characteristics affecting the Qmax flow volume; determination of the value of dimensionless quantiles for QT flow calculation in the upper Vistula basin; verification of the determined correlation for the calculation of QT flows in the upper Vistula basin. Based on the research we conducted, we found that the following factors have the greatest impact on the formation of flood flows in the upper Vistula basin: the size of catchment area; the height difference in the catchment area; the density of the river network; the soil imperviousness index; and the volume of normal annual precipitation. The verification procedure that we performed made it possible to conclude that the developed empirical model functions correctly.


2006 ◽  
Vol 10 (2) ◽  
pp. 233-243 ◽  
Author(s):  
E. Gaume

Abstract. This paper presents some analytical results and numerical illustrations on the asymptotic properties of flood peak distributions obtained through derived flood frequency approaches. It confirms and extends the results of previous works: i.e. the shape of the flood peak distributions are asymptotically controlled by the rainfall statistical properties, given limited and reasonable assumptions concerning the rainfall-runoff process. This result is partial so far: the impact of the rainfall spatial heterogeneity has not been studied for instance. From a practical point of view, it provides a general framework for analysis of the outcomes of previous works based on derived flood frequency approaches and leads to some proposals for the estimation of very large return-period flood quantiles. This paper, focussed on asymptotic distribution properties, does not propose any new approach for the extrapolation of flood frequency distribution to estimate intermediate return period flood quantiles. Nevertheless, the large distance between frequent flood peak values and the asymptotic values as well as the simulations conducted in this paper help quantifying the ill condition of the problem of flood frequency distribution extrapolation: it illustrates how large the range of possibilities for the shapes of flood peak distributions is.


2000 ◽  
Vol 4 (3) ◽  
pp. 483-498 ◽  
Author(s):  
M. Franchini ◽  
A. M. Hashemi ◽  
P. E. O’Connell

Abstract. The sensitivity analysis described in Hashemi et al. (2000) is based on one-at-a-time perturbations to the model parameters. This type of analysis cannot highlight the presence of parameter interactions which might indeed affect the characteristics of the flood frequency curve (ffc) even more than the individual parameters. For this reason, the effects of the parameters of the rainfall, rainfall runoff models and of the potential evapotranspiration demand on the ffc are investigated here through an analysis of the results obtained from a factorial experimental design, where all the parameters are allowed to vary simultaneously. This latter, more complex, analysis confirms the results obtained in Hashemi et al. (2000) thus making the conclusions drawn there of wider validity and not related strictly to the reference set selected. However, it is shown that two-factor interactions are present not only between different pairs of parameters of an individual model, but also between pairs of parameters of different models, such as rainfall and rainfall-runoff models, thus demonstrating the complex interaction between climate and basin characteristics affecting the ffc and in particular its curvature. Furthermore, the wider range of climatic regime behaviour produced within the factorial experimental design shows that the probability distribution of soil moisture content at the storm arrival time is no longer sufficient to explain the link between the perturbations to the parameters and their effects on the ffc, as was suggested in Hashemi et al. (2000). Other factors have to be considered, such as the probability distribution of the soil moisture capacity, and the rainfall regime, expressed through the annual maximum rainfalls over different durations. Keywords: Monte Carlo simulation; factorial experimental design; analysis of variance (ANOVA)


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1450 ◽  
Author(s):  
Dariusz Młyński ◽  
Andrzej Wałęga ◽  
Leszek Książek ◽  
Jacek Florek ◽  
Andrea Petroselli

The aim of the study was to analyze the possibility of using selected rainfall-runoff models to determine the design hydrograph and the related peak flow in a mountainous catchment. The basis for the study was the observed series of hydrometeorological data for the Grajcarek catchment area (Poland) for the years 1981–2014. The analysis was carried out in the following stages: verification of hydrometeorological data; determination of the design rainfall; and determination of runoff hydrographs with the following rainfall-runoff models: Snyder, NRCS-UH, and EBA4SUB. The conducted research allowed the conclusion that the EBA4SUB model may be an alternative to other models in determining the design hydrograph in ungauged mountainous catchments. This is evidenced by the lower values of relative errors in the estimation of peak flows with an assumed frequency for the EBA4SUB model, as compared to Snyder and NRCS-UH.


Author(s):  
Rosaria E. Musumeci ◽  
Carla Faraci ◽  
Felice Arena ◽  
Enrico Foti

In the present paper the risk of beach erosion is evaluated by applying the Equivalent Triangular Storm (ETS). The selected case study is ‘La Plaja’ beach located in the South of Catania, Sicily. The proposed approach has shown that when the ETS model is applied, a shoreline retreat has been found which on average overestimates the one obtained by means of actual storm data of about 35%. The model has been applied for the determination of the return period of shoreline recession due to beach erosion during extreme events in order to recover risk maps, which can provide useful information in the planning of coastal interventions. Finally the model has been applied to predict the shoreline retreat in the presence of a submerged breakwater, confirming that the introduction of such coastal protection work strongly limits the risk of coastal erosion.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 709 ◽  
Author(s):  
Munir Snu ◽  
Sidek L.M ◽  
Haron Sh ◽  
Noh Ns.M ◽  
Basri H ◽  
...  

The recent flood event occurred in 2014 had caused disaster in Perak and Sungai Perak is the main river of Perak which is a major natural drainage system within the state. The aim of this paper is to determine the expected discharge to return period downstream for Sg. Perak River Basin in Perak by using annual maximum flow data. Flood frequency analysis is a technique to assume the flow values corresponding to specific return periods or probabilities along the river at a different site. The method involves the observed annual maximum flow discharge data to calculate statistical information such as standard deviations, mean, sum, skewness and recurrence intervals. The flood frequency analysis for Sg. Perak River Basin was used Log Pearson Type-III probability distribution method. The annual maximum peak flow series data varying over period 1961 to 2016. The probability distribution function was applied to return periods (T) where T values are 2years, 5years, 10years, 25years, 50years, and 100years generally used in flood forecasting. Flood frequency curves are plotted after the choosing the best fits probability distribution for annual peak maximum data. The results for flood frequency analysis shows that Sg. Perak at Jambatan Iskandar much higher inflow discharge  which is 3714.45m3/s at the 100years return period compare to Sg. Plus at Kg Lintang and Sg. Kinta at Weir G. With this, the 100years peak flow at Sg Perak river mouth is estimated to be in the range of 4,000 m3/s. Overall, the analysis relates the expected flow discharge to return period for all tributaries of Sg. Perak River Basin.


2008 ◽  
Vol 35 (10) ◽  
pp. 1177-1182 ◽  
Author(s):  
A. Melih Yanmaz ◽  
M. Engin Gunindi

There is a growing tendency to assess safety levels of existing dams and to design new dams using probabilistic approaches according to project characteristics and site-specific conditions. This study is a probabilistic assessment of the overtopping reliability of a dam, which will be designed for flood detention purpose, and will compute the benefits that can be gained as a result of the implementation of this dam. In a case study, a bivariate flood frequency analysis was carried out using a five-parameter bivariate gamma distribution. A family of joint return period curves relating the runoff peak discharges to the runoff volumes at the dam site was derived. A number of hydrographs were also obtained under a joint return period of 100 years to observe the variation of overtopping tendency. The maximum reservoir elevation and overtopping reliability were determined by performing a probabilistic reservoir routing based on Monte Carlo simulations.


2000 ◽  
Vol 4 (3) ◽  
pp. 463-482 ◽  
Author(s):  
A. M. Hashemi ◽  
M. Franchini ◽  
P. E. O’Connell

Abstract. Regionalized and at-site flood frequency curves exhibit considerable variability in their shapes, but the factors controlling the variability (other than sampling effects) are not well understood. An application of the Monte Carlo simulation-based derived distribution approach is presented in this two-part paper to explore the influence of climate, described by simulated rainfall and evapotranspiration time series, and basin factors on the flood frequency curve (ffc). The sensitivity analysis conducted in the paper should not be interpreted as reflecting possible climate changes, but the results can provide an indication of the changes to which the flood frequency curve might be sensitive. A single site Neyman Scott point process model of rainfall, with convective and stratiform cells (Cowpertwait, 1994; 1995), has been employed to generate synthetic rainfall inputs to a rainfall runoff model. The time series of the potential evapotranspiration (ETp) demand has been represented through an AR(n) model with seasonal component, while a simplified version of the ARNO rainfall-runoff model (Todini, 1996) has been employed to simulate the continuous discharge time series. All these models have been parameterised in a realistic manner using observed data and results from previous applications, to obtain ‘reference’ parameter sets for a synthetic case study. Subsequently, perturbations to the model parameters have been made one-at-a-time and the sensitivities of the generated annual maximum rainfall and flood frequency curves (unstandardised, and standardised by the mean) have been assessed. Overall, the sensitivity analysis described in this paper suggests that the soil moisture regime, and, in particular, the probability distribution of soil moisture content at the storm arrival time, can be considered as a unifying link between the perturbations to the several parameters and their effects on the standardised and unstandardised ffcs, thus revealing the physical mechanism through which their influence is exercised. However, perturbations to the parameters of the linear routing component affect only the unstandardised ffc. In Franchini et al. (2000), the sensitivity analysis of the model parameters has been assessed through an analysis of variance (ANOVA) of the results obtained from a formal experimental design, where all the parameters are allowed to vary simultaneously, thus providing deeper insight into the interactions between the different factors. This approach allows a wider range of climatic and basin conditions to be analysed and reinforces the results presented in this paper, which provide valuable new insight into the climatic and basin factors controlling the ffc. Keywords: stochastic rainfall model; rainfall runoff model; simulation; derived distribution; flood frequency; sensitivity analysis


Sign in / Sign up

Export Citation Format

Share Document