scholarly journals Application of Limit Equilibrium Analysis and Numerical Modeling in a Case of Slope Instability

2020 ◽  
Vol 12 (21) ◽  
pp. 8870
Author(s):  
Fhatuwani Sengani ◽  
François Mulenga

The application of limit equilibrium analysis and numerical simulation in case of slope instability is described. The purpose of the study was to use both limit equilibrium methods (LEMs) and numerical simulations (finite element method (FEM)) to understanding the common factor imposing the selected slope into slope instabilities. Field observations, toppling analysis, rotational analysis, and numerical simulations were performed. The results of the study showed that the selected unstable slopes were associated with the sliding types of toppling; it was observed that the slopes were governed by tension cracks and layered soil mass and dominated with approximately two joints sets throughout. The simulated factor of safety (FoS) of the slopes composed of clay soil was denoted to be prone to slope instability while others were categorized as moderately stable. The simulated FoS of the slopes correlated very well with the visual observations; however, it is anticipated that properties of soil mass and other characteristics of the slopes contributed largely to the simulated FoS. The sensitivity of the model was further tested by looking into the effect of the slope angle on the stability of the slope. The results of the simulations showed that the steeper the slope, the more they become prone to instability. Lastly, Phase 2 numerical simulation (FEM) showed that volumetric strain, shear stress, shear strain, total displacement, and σ1 and σ3 components of the slope increase with the stages of the road construction. It was concluded improper road construction, steepness of the slope, slope properties (soil types), and multiple geological features cutting across are the common mechanisms behind the slope instability.

2011 ◽  
Vol 378-379 ◽  
pp. 418-422
Author(s):  
Ji Lun Miao ◽  
Jing Qiu Chen ◽  
Cen Wen

A sliding block model is developed for predicting the runout of high-speed landslides, which couple with SPH method (Smoothed Particle Hydrodynamics) to simulate impulse wave. This model adopts the limit equilibrium analysis approach to simulate the whole travel process of the soil mass from the onset of the landslide. The submarine landslide produces highly unsteady and rapidly varied flows, so it was very complicated by fixed grid numerical simulations. The SPH method is a meshfree particle-based Lagrangian method. A sample test is given which shows the impulsive waves generated by high-speed landslide can be reproduced well.


2014 ◽  
Vol 974 ◽  
pp. 293-297
Author(s):  
Xiao Ping Wang ◽  
Xiong Xia ◽  
Kun Hu ◽  
Jin Cai Feng

The progressive failure study of the slope is a challenging problem. There exist a lot of problems at present in this area, it’s necessary to do some summaries. This paper did some analysis and discussion from four aspects: limit equilibrium analysis of the slope progressive failure; test analysis of the slope progressive failure, numerical simulation of the slope progressive failure and limit equilibrium analysis on the basis of finite element, and provided some reference for slope progressive failure study.


2011 ◽  
Vol 368-373 ◽  
pp. 2056-2059
Author(s):  
Chun Yuan Liu ◽  
Cheng Wei Liu ◽  
Jie Ding ◽  
Yu Lian Guo

In this paper we introduce sandbag cofferdam combined with sand-filling core of embankment ,integrate stability’s checking calculation using method of limit equilibrium, analysis and adjustment of parameters, comparing with finite element numerical simulation and other means, in order to analyze nearly horizontal plane landslide, summarize its genesis, deformation mechanism, and provide prevention basis for this kind of landslide.


2015 ◽  
Vol 9 (1) ◽  
pp. 108-111 ◽  
Author(s):  
Sun Hong-Jun ◽  
Fan Yan-Chao ◽  
Zhao Li-Hong

To study the stability of waste body failure in landfill, the landfill was divided into two parts: an active wedge and a passive wedge. A limit equilibrium analysis was used to calculate the safety factor of stability in landfill. The parameters which affected the stability of the landfill were discussed. Sensitivity curves of each parameter were proposed and effect trends of various parameters on safety factor were analyzed. Cohesion c and internal friction angle фs increases linearly with the safety factor. The safety factor decreases with increasing slope angle β and filled height H. The safety factor of after landfill settlement was higher than the safety factor of settlement which did not occur. It increases the overall stability about 16%.


1970 ◽  
Vol 10 ◽  
pp. 71-78
Author(s):  
Suman Manandhar

Slope stability analyses were carried out for slopes around the horticultural farm at Daman, Central Mahabharat Region of Nepal. Daman lies in the Mahabharat zone with intruded granite as the basement rock. These granites are highly to completely weathered and decomposed to few metres depth from the exposed surfaces. The horticultural farm is situated over these decomposed rocks with some colluvium along the hill slopes. The rainstorm of 19-21 July 1993 devasted the horticultural farm with numerous landslides and gully erosions. Based on the limit equilibrium analysis theory and computed index as well as strength properties of the soil, analyses of three of the failed slopes were carried out. The analyses revealed that slides were unstable only during fully saturated conditions.   doi: 10.3126/bdg.v10i0.1422 Bulletin of the Department of Geology, Tribhuvan University, Kathmandu, Nepal, Vol. 10, 2007, pp. 71-78


1992 ◽  
Vol 29 (6) ◽  
pp. 971-988 ◽  
Author(s):  
Z. Chen ◽  
N. R. Morgenstern ◽  
D. H. Chan

The mechanism of progressive failure is well understood as one which involves nonuniform straining of a strain-weakening material. Traditional limit equilibrium analysis cannot be used alone to obtain a rational solution for progressive failure problems because the deformation of the structure must be taken into account in the analysis. The failure of the Carsington Dam during construction in 1984 has been attributed to progressive failure of the underlying yellow clay and the dam core materials. The dam was monitored extensively prior to failure, and an elaborate geotechnical investigation was undertaken after failure. The limit equilibrium analysis indicated that the factors of safety were over 1.4 using peak strength of intact clay material or 1.2 based on reduced strength accounting for preshearing of the yellow clay layer. Factors of safety were found to be less than unity if residual strengths were used. The actual factor of safety at failure was, of course, equal to one. By using the finite element analysis with strain-weakening models, the extent and degree of weakening along the potential slip surface were calculated. The calculated shear strength was then used in the limit equilibrium analysis, and the factor of safety was found to be 1.05, which is very close to the actual value of 1.0. More importantly, the mechanism of failure and the initiation and propagation of the shear zones were captured in the finite element analysis. It was also found that accounting explicitly for pore-water pressure effects using the effective stress approach in the finite element and limit equilibrium analyses provides more realistic simulations of the failure process of the structure than analyses based on total stresses. Key words : progressive failure, strain softening, finite element analysis, dams.


2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1877-1884 ◽  
Author(s):  
Diego Alarcón ◽  
Eduardo. Balvís ◽  
Ricardo Bendaña ◽  
Alberto Conejero ◽  
de Fernández ◽  
...  

We present a detailed study of heating and cooling processes in LED luminaires with passive heat sinks. Our analysis is supported by numerical simulations as well as experimental measurements, carried on commercial systems used for outdoor lighting. We have focused our analysis on the common case of a single LED source in thermal contact with an aluminum passive heat sink, obtaining an excellent agreement with experimental measurements and the numerical simulations performed. Our results can be easily expanded, without loss of generality, to similar systems.


Sign in / Sign up

Export Citation Format

Share Document