scholarly journals Advanced Ultra-Supercritical Coal-Fired Power Plant with Post-Combustion Carbon Capture: Analysis of Electricity Penalty and CO2 Emission Reduction

2021 ◽  
Vol 13 (2) ◽  
pp. 801
Author(s):  
Branimir Tramošljika ◽  
Paolo Blecich ◽  
Igor Bonefačić ◽  
Vladimir Glažar

This article presents the performance analysis of a 700 MW future planned advanced ultra-supercritical (A-USC) coal-fired power plant fitted with post-combustion carbon capture and storage (CCS) technology. The reference A-USC unit without CCS achieves a net efficiency of 47.6% with CO2 emissions of 700 kgCO2/MWh. Relatively to subcritical units, the net efficiency of the A-USC is 8%-pts higher while CO2 emissions are 16.5% lower. For a CO2 removal rate of 90%, the net efficiency of the CCS integrated A-USC unit is 36.8%. The resulting net efficiency loss is 10.8%-pts and the electricity output penalty is 362.3 kWhel/tCO2 for present state CCS technology. The study continues with the assessment of interface quantities between the capture unit and the steam cycle affecting the performance of the A-USC. Improved CO2 absorbents could alleviate the net efficiency loss by 2–3%-pts, and enhanced CO2 compression strategies and advanced heat integration could further reduce the efficiency loss by 0.5–1.2%-pts and 0.4–0.6%-pts, respectively. The total efficiency gain from CCS technology upgrades is estimated at 3.6%-pts, thus bringing down the net efficiency loss to 7.2%-pts and the electricity output penalty to 241.7 kWhel/tCO2.

2013 ◽  
Vol 295-298 ◽  
pp. 2223-2226
Author(s):  
Chuan Lin Huo ◽  
Cheng Huo ◽  
Dao Ming Guan

Carbon capture and storage (CCS) is a significant strategic climate protection technology, and has become the most possibility and practical significance approach of emission reduction. CCS technology is the means to reduce the amount of CO2 into the atmosphere in the case of no reducing the amount of fossil fuels. China's CO2 emissions are the second in the world and it is difficult to change the current energy consumption in a short time. CO2 emissions will continue to increase with the rapid development of China's economy which will bring the huge CO2 emission reduction pressure. In this paper the CCS technology is introduced and the necessity and feasibility of CCS in China are analysed.


Energy Policy ◽  
2021 ◽  
Vol 158 ◽  
pp. 112562
Author(s):  
Lin Yang ◽  
Mao Xu ◽  
Jingli Fan ◽  
Xi Liang ◽  
Xian Zhang ◽  
...  

Author(s):  
Roger H Bezdek ◽  

This paper assesses the relative economic and jobs benefits of retrofitting an 847 MW USA coal power plant with carbon capture, utilization, and storage (CCUS) technology compared to replacing the plant with renewable (RE) energy and battery storage. The research had two major objectives: 1) Estimate the relative environmental, economic, and jobs impacts of CCUS retrofit of the coal plant compared to its replacement by the RE scenario; 2) develop metrics that can be used to compare the jobs impacts of coal fueled power plants to those of renewable energy. The hypotheses tested are: 1) The RE option will reduce CO2 emissions more than the CCUS option. We reject this hypothesis: We found that the CCUS option will reduce CO2 emissions more than the RE option. 2) The RE option will generate greater economic benefits than the CCUS option. We reject this hypothesis: We found that the CCUS option will create greater economic and jobs benefits than the RE option. 3) The RE option will create more jobs per MW than the CCUS option. We reject this hypothesis: We found that the CCUS option will create more jobs per MW more than the RE option. We discuss the implications of these findings.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3840
Author(s):  
Alla Toktarova ◽  
Ida Karlsson ◽  
Johan Rootzén ◽  
Lisa Göransson ◽  
Mikael Odenberger ◽  
...  

The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF), where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2), could result in almost fossil-free steel production, and Sweden could achieve a 10% reduction in total CO2 emissions. Finally, (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI), could lead to decarbonization of the steel industry outside Sweden, assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.


2020 ◽  
Vol 54 (7) ◽  
pp. 4528-4535
Author(s):  
Julia S. Kirchner ◽  
Andrew Berry ◽  
Frank Ohnemüller ◽  
Bernhard Schnetger ◽  
Egon Erich ◽  
...  

Author(s):  
Teresa ADAMCZAK-BIAŁY ◽  
Adam WÓJCICKI

Information presented in the article allows us to introduce one of the ways of reducing anthropogenic greenhouse gas emissions responsible for the temperature increase and climate change. This is the technology of capture and underground storage of carbon dioxide in geologic structures (Carbon Capture and Storage/Sequestration – CCS). Most of the large-scale CCS projects (i.e. capture and storage of an order of magnitude of 1 million tonnes of CO2 per year) operate in the United States and Canada. Many of them are associated with the use of CO2 captured from the industrial processes for the enhanced oil recovery (EOR). The presented examples of projects are: Boundary Dam Integrated Carbon Capture and Sequestration Demonstration Project (Canada), Great Plains Synfuels and Weyburn-Midale Project (Canada), and Kemper County IGCC Project (United States). CCS projects are crucial for demonstrating the technological readiness and reduce the cost of wider commercial implementation of capture and geological storage of CO2. The status of the projects on geological storage of CO2 in 2015 is 15 large-scale CCS projects operating around the world, and 7 projects in execution.


Sign in / Sign up

Export Citation Format

Share Document