scholarly journals Adaptation of an Insulated Centralized Photovoltaic Outdoor Lighting Installation with Electronic Control System to Improve Service Guarantee in Tropical Latitudes

2021 ◽  
Vol 13 (4) ◽  
pp. 1925
Author(s):  
Antonio Ocana-Miguel ◽  
Jose R. Andres-Diaz ◽  
Enrique Navarrete-de Galvez ◽  
Alfonso Gago-Calderon

Sustainability and energy prices make the energy production from renewable sources necessary and photovoltaic energy is ideal on an urban scale and on isolated facilities. However, when the demand for energy is at night, as in lighting installation, the use of accumulative systems is necessary. The use of batteries can account for more than 70% of the budget of these systems and have a critical impact in the project. This problem increases when the installation’s location moves away from the equator, as the variation between the duration of days and nights increases. This implies that the system must be oversized to almost triple its generation and storage capacity to guarantee operation. This paper proposes the use of a robust and affordable electronic centralized management system that can regulate the consumption based on the energy available in the batteries. To test this system, a real case of outdoor lighting nanogrid has been used. The facility has been powered by a grouped photovoltaic battery system dimensioned for the average year solar conditions with and without consumption management. When used without regulation, in winter or cloudy days, there have been repetitive crashes of the system. On the other hand, with the use of the electronic control proposed, the shutdowns have been avoided, regulating the lighting level when necessary. Thus, more efficient and economically affordable systems can be designed which can help to spread the installation of isolated photovoltaic lighting.

2018 ◽  
Vol 8 (8) ◽  
pp. 1221 ◽  
Author(s):  
Abdelkader Rouibah ◽  
Djamel Benazzouz ◽  
Rahmani Kouider ◽  
Awf Al-Kassir ◽  
Justo García-Sanz-Calcedo ◽  
...  

The increase of solar energy production has become a solution to meet the demand of electricity and reduce the greenhouse effect worldwide. This paper aims to determine the performance and viability of direct normal irradiation of three solar tower power plants in Algeria, to be installed in the highlands and the Sahara (Béchar, El Oued, and Djelfa regions). The performance of the plants was obtained through a system advisor model simulator. It used real data gathered from appropriate meteorological files. A relationship between the solar multiple (SM), power generation, and thermal energy storage (TES) hours was observed. The results showed that the optimal heliostat field corresponds to 1.8 SM and 2 TES hours in Béchar, 1.2 SM and 2 TES hours for El Oued, and 1.5 SM and 4 TES hours for Djelfa. This study shows that there is an interesting relationship between the solar multiple, power generation, and storage capacity.


Author(s):  
A. A. Korneev

The article presents the results of the study of the filament modes of electronic lamps and ensuring the rational temperature of the cathode. A brief description and comparative analysis of existing methods with the proposed author are given. The dependence diagrams obtained as a result of a real experiment are presented. A new method of rational control of the electric vacuum devices (EVP) filament mode is proposed, thereby increasing the reliability and increasing the durability of the EVP during operation in high-quality and expensive complex technical systems. According to the results of the study, a new specialized electronic device was developed, which allowed to smoothly regulate the supply of the filament voltage, thereby ensuring the rational control of the operation of the EVP. The technique and specialized electronic device are developed on the basis of modern scientific and technical achievements. This made it possible to increase the reliability and efficiency of the electronic control system for solving critical tasks. When implementing the developed device, the problem of import substitution was solved.


2021 ◽  
Vol 13 (3) ◽  
pp. 1537
Author(s):  
Irene Zluwa ◽  
Ulrike Pitha

In the case of building surfaces, the installation of green roofs or green facades can be used to reduce the temperature of the environment and the building. In addition, introducing photovoltaic energy production will help to reduce CO2 emissions. Both approaches (building greenery and photovoltaic energy production) compete, as both of them are located on the exterior of buildings. This paper aims to give an overview of solutions for the combination of building greenery (BG) systems and photovoltaic (PV) panels. Planning principles for different applications are outlined in a guideline for planning a sustainable surface on contemporary buildings. A comprehensive literature review was done. Identified solutions of combinations were systematically analysed and discussed in comparison with additional relevant literature. The main findings of this paper were: (A) BG and PV systems with low sub-construction heights require shallow substrates/low growing plants, whereas in the case of the combination of (a semi)-intensive GR system, a distance of a minimum 60 cm between the substrate surface and lower panel edge is recommended; (B) The cooling effect of the greenery depends on the distance between the PV and the air velocity; (C) if the substrate is dry, there is no evapotranspiration and therefore no cooling effect; (D) A spectrum of different PV systems, sub-constructions, and plants for the combination of BG and PV is necessary and suitable for different applications shown within the publication.


2021 ◽  
pp. 1-17
Author(s):  
Shilin Peng ◽  
Xiao Jiang ◽  
Yongzhen Tang ◽  
Chong Li ◽  
Xiaodong Li ◽  
...  

Abstract Subglacial lake exploration is of great interest to the science community. RECoverable Autonomous Sonde (RECAS) provides an exploration tool to measure and sample subglacial lake environments while the subglacial lake remains isolated from the glacier surface and atmosphere. This paper presents an electronic control system design of 200 m prototype of RECAS. The proposed electronic control system consists of a surface system, a downhole control system, and a power transfer and communication system. The downhole control system is the core element of RECAS, and is responsible for sonde status monitoring, sonde motion control, subglacial water sampling and in situ analysis. A custom RS485 temperature sensor was developed to cater for the limited size and depth requirements of the system. We adopted a humidity-based measurement to monitor for a housing leak. This condition is because standard leak detection monitoring of water conductivity may be inapplicable to pure ice in Antarctica. A water sampler control board was designed to control the samplers and monitor the on/off state. A high-definition camera system with built-in storage and self-heating ability was designed to perform the video recording in the subglacial lake. The proposed electronic control system is proven effective after a series of tests.


Sign in / Sign up

Export Citation Format

Share Document