scholarly journals Flood Risk Assessment in Urban Areas of Southern Taiwan

2021 ◽  
Vol 13 (6) ◽  
pp. 3180
Author(s):  
Wen-Cheng Liu ◽  
Tien-Hsiang Hsieh ◽  
Hong-Ming Liu

A flood risk assessment of urban areas in Kaohsiung city along the Dianbao River was performed based on flood hazards and social vulnerability. In terms of hazard analysis, a rainfall-runoff model (HEC-HMS) was adopted to simulate discharges in the watershed, and the simulated discharges were utilized as inputs for the inundation model (FLO-2D). Comparisons between the observed and simulated discharges at the Wulilin Bridge flow station during Typhoon Kongrey (2013) and Typhoon Megi (2016) were used for the HEC-HMS model calibration and validation, respectively. The observed water levels at the Changrun Bridge station during Typhoon Kongrey and Typhoon Megi were utilized for the FLO-2D model calibration and validation, respectively. The results indicated that the simulated discharges and water levels reasonably reproduced the observations. The validated model was then applied to predict the inundation depths and extents under 50-, 100-, and 200-year rainfall return periods to form hazard maps. For social vulnerability, the fuzzy Delphi method and the analytic hierarchy process were employed to select the main factors affecting social vulnerability and to yield the weight of each social vulnerability factor. Subsequently, a social vulnerability map was built. A risk map was developed that compiled both flood hazards and social vulnerability levels. Based on the risk map, flood mitigation strategies with structural and nonstructural measures were proposed for consideration by decision-makers.

Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 104 ◽  
Author(s):  
Qiang Liu ◽  
Hongmao Yang ◽  
Min Liu ◽  
Rui Sun ◽  
Junhai Zhang

Cities located in the transitional zone between Taihang Mountains and North China plain run high flood risk in recent years, especially urban waterlogging risk. In this paper, we take Shijiazhuang, which is located in this transitional zone, as the study area and proposed a new flood risk assessment model for this specific geographical environment. Flood risk assessment indicator factors are established by using the digital elevation model (DEM), along with land cover, economic, population, and precipitation data. A min-max normalization method is used to normalize the indices. An analytic hierarchy process (AHP) method is used to determine the weight of each normalized index and the geographic information system (GIS) spatial analysis tool is adopted for calculating the risk map of flood disaster in Shijiazhuang. This risk map is consistent with the reports released by Hebei Provincial Water Conservancy Bureau and can provide reference for flood risk management.


Author(s):  
T Rashidul Kabir ◽  
B Gersonius ◽  
C Zevenbergen ◽  
P van Gelder ◽  
Mohammad Shah

2004 ◽  
Vol 50 (7) ◽  
pp. 113-122 ◽  
Author(s):  
C Printemps ◽  
A Baudin ◽  
T Dormoy ◽  
M. Zug ◽  
P.A. Vanrolleghem

Better controlling and optimising the plant's processes has become a priority for WWTP (Wastewater Treatment Plant) managers. The main objective of this project is to develop a simplified mathematical tool able to reproduce and anticipate the behaviour of the Tougas WWTP (Nantes, France). This tool is aimed to be used directly by the managers of the site. The mathematical WWTP model was created using the software WEST®. This paper describes the studied site and the modelling results obtained during the stage of the model calibration and validation. The good simulation results have allowed to show that despite a first very simple description of the WWTP, the model was able to correctly predict the nitrogen composition (ammonia and nitrate) of the effluent and the daily sludge extraction. Then, a second more detailed configuration of the WWTP was implemented. It has allowed to independently study the behaviour of each of four biological trains. Once this first stage will be completely achieved, the remainder of the study will focus on the operational use of a simplified simulator with the purpose of optimising the Tougas WWTP operation.


2021 ◽  
Vol 173 ◽  
pp. 107190
Author(s):  
Paulina Quintanilla ◽  
Stephen J. Neethling ◽  
Diego Mesa ◽  
Daniel Navia ◽  
Pablo R. Brito-Parada

Author(s):  
Heng Wei

This chapter summarizes fundamental models for microscopic simulation (such as vehicle generation model and car-following model) and other critical models (such as lane-choice model, lane-changing model, and route-choice model). Most of the critical models introduced in this chapter reflect the latest research results by the author. The primary purpose of this chapter is to provide fundamentals for better understanding of the travel behaviors that are modeled for traffic simulations. To facilitate the applications of traffic simulation models, several key elements for applying state-of-the-art computer traffic simulation tools are summarized. They include the procedure for building models, model calibration and validation. Further more, techniques for collecting vehicle trajectory data, critical elements used for model calibration and validation, are also introduced.


Sign in / Sign up

Export Citation Format

Share Document