scholarly journals Tobacco and Deforestation Revisited. How to Move towards a Global Land-Use Transition?

2021 ◽  
Vol 13 (16) ◽  
pp. 9242
Author(s):  
Helmut J. Geist

Articles 17 and 18 of the United Nations (UN) Framework Convention on Tobacco Control address the environmental sustainability of tobacco as a contested agricultural crop. They require regulatory land-use policies to be introduced and designed to enhance a sustainability transition to diversified farming practices and/or alternative livelihoods. Related activities of the UN Study/Working Group on Economically Sustainable Alternatives to Tobacco Growing are reviewed to assess and monitor the crop’s impact on natural resources with a focus on methods to identify tobacco-attributable deforestation (remote sensing, proxy values, secondary statistics, natural valuation, ecological/social surveys). It is posited that since 2007 no advances have been achieved in framing woody biomass destruction/degradation due to land extension and curing (i.e., drying green leaf using wood). Building on support by digital technologies and land surface monitoring systems, a novel post-2020 strategy is proposed to mainstream an extended set of indicators integratively, i.e., addressing biodiversity losses, soil carbon reservoirs and land degradation neutrality of tobacco as an agricultural crop. Thus, the point is emphasized that land stewardship requires political priority setting that makes the framing of land-use sustainability metrics more than a purely technical matter.

2021 ◽  
Vol 4 ◽  
pp. 50-68
Author(s):  
S.А. Lysenko ◽  
◽  
P.О. Zaiko ◽  

The spatial structure of land use and biophysical characteristics of land surface (albedo, leaf index, and vegetation cover) are updated using the GLASS (Global Land Surface Satellite) and GLC2019 (Global Land Cover, 2019) modern satellite databases for mesoscale numerical weather prediction with the WRF model for the territory of Belarus. The series of WRF-based numerical experiments was performed to verify the influence of the updated characteristics on the forecast quality for some difficult to predict winter cases. The model was initialized by the GFS (Global Forecast System, NCEP) global numerical weather prediction model. It is shown that the use of high-resolution land use data in the WRF and the consideration of the new albedo and leaf index distribution over the territory of Belarus can reduce the root-mean-square error (RMSE) of short-range (to 48 hours) forecasts of surface air temperature by 16–33% as compared to the GFS. The RMSE of the temperature forecast for the weather stations in Belarus for a forecast lead time of 12, 24, 36, and 48 hours decreased on average by 0.40°С (19%), 0.35°С (10%), 0.68°С (23%), and 0.56°С (15%), respectively. The most significant decrease in RMSE of the numerical forecast of temperature (up to 2.1 °С) was obtained for the daytime (for a lead time of 12 and 36 hours), when positive feedbacks between albedo and temperature of the land surface are manifested most. Keywords: numerical weather prediction, WRF, digital land surface model, albedo, leaf area index, forecast model validation


2021 ◽  
Author(s):  
Karina Winkler ◽  
Richard Fuchs ◽  
Mark Rounsevell ◽  
Martin Herold

<p>Land use change is a major contributor to greenhouse gas emissions and biodiversity loss and, hence, a key topic for current sustainability debates and climate change mitigation. To understand its impacts, accurate data of global land use change and an assessment of its extent, dynamics, causes and interrelations are crucial. However, although numerous observational data is publicly available (e.g. from remote sensing), the processes and drivers of land use change are not yet fully understood. In particular, current global-scale land change assessments still lack either temporal consistency, spatial explicitness or thematic detail. <br>Here, we analyse the patterns of global land use change and its underlying drivers based on our novel high-resolution (~1x1 km) dataset of global land use/cover (LULC) change from 1960-2019, HILDA+ (Historic Land Dynamics Assessment+). The data harmonises multiple Earth Observation products and FAO land use statistics. It covers all transitions between six major LULC categories (urban areas, cropland, pasture/rangeland, forest, unmanaged grass-/shrubland and no/sparse vegetation).<br>On this basis, we show (1) a classification of global LULC transitions into major processes of land use change, (2) a quantification of their spatiotemporal patterns and (3) an identification of their major socioeconomic and environmental drivers across the globe. By using temporal cross-correlation, we study the influence of selected drivers on processes such as agricultural land abandonment, deforestation, forest degradation or urbanisation.<br>With this, we are able to map the patterns and drivers of global land use change at unprecedented resolution and compare them for different world regions. Giving new data-driven and quantitative insights into a largely untouched field, we identify tele-coupled globalisation patterns and climate change as important influencing factors for land use dynamics. Learning from the recent past, understanding how socio-economic and environmental factors affect the way humans use the land surface is essential for estimating future impacts of land use change and implementing measures of climate mitigation and sustainable land use policies.</p>


2018 ◽  
Vol 11 (7) ◽  
pp. 2995-3026 ◽  
Author(s):  
Vanessa Haverd ◽  
Benjamin Smith ◽  
Lars Nieradzik ◽  
Peter R. Briggs ◽  
William Woodgate ◽  
...  

Abstract. The Community Atmosphere–Biosphere Land Exchange model (CABLE) is a land surface model (LSM) that can be applied stand-alone and provides the land surface–atmosphere exchange within the Australian Community Climate and Earth System Simulator (ACCESS). We describe new developments that extend the applicability of CABLE for regional and global carbon–climate simulations, accounting for vegetation responses to biophysical and anthropogenic forcings. A land use and land cover change module driven by gross land use transitions and wood harvest area was implemented, tailored to the needs of the Coupled Model Intercomparison Project 6 (CMIP6). Novel aspects include the treatment of secondary woody vegetation, which benefits from a tight coupling between the land use module and the Population Orders Physiology (POP) module for woody demography and disturbance-mediated landscape heterogeneity. Land use transitions and harvest associated with secondary forest tiles modify the annually resolved patch age distribution within secondary vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. Additionally, we implemented a novel approach to constrain modelled GPP consistent with the coordination hypothesis and predicted by evolutionary theory, which suggests that electron-transport- and Rubisco-limited rates adjust seasonally and across biomes to be co-limiting. We show that the default prior assumption – common to CABLE and other LSMs – of a fixed ratio of electron transport to carboxylation capacity at standard temperature (Jmax, 0∕Vcmax, 0) is at odds with this hypothesis; we implement an alternative algorithm for dynamic optimisation of this ratio such that coordination is achieved as an outcome of fitness maximisation. The results have significant implications for the magnitude of the simulated CO2 fertilisation effect on photosynthesis in comparison to alternative estimates and observational proxies. These new developments enhance CABLE's capability for use within an Earth system model and in stand-alone applications to attribute trends and variability in the terrestrial carbon cycle to regions, processes and drivers. Model evaluation shows that the new model version satisfies several key observational constraints: (i) trend and interannual variations in the global land carbon sink, including sensitivities of interannual variations to global precipitation and temperature anomalies; (ii) centennial trends in global GPP; (iii) coordination of Rubisco-limited and electron-transport-limited photosynthesis; (iv) spatial distributions of global ET, GPP, biomass and soil carbon; and (v) age-dependent rates of biomass accumulation in boreal, temperate and tropical secondary forests. CABLE simulations agree with recent independent assessments of the global land–atmosphere flux partition that use a combination of atmospheric inversions and bottom-up constraints. In particular, there is agreement that the strong CO2-driven sink in the tropics is largely cancelled by net deforestation and forest degradation emissions, leaving the Northern Hemisphere (NH) extratropics as the dominant contributor to the net land sink.


Author(s):  
Lasantha Manawadu ◽  
M. D. K. L. Gunathilaka ◽  
V. P. I. S. Wijerathne ◽  
K. L. W. I. Gunathilake

Human activities have recognized in recent years as the most significant force shaping the biosphere. This is completely true concerning rapid changes in the land surface. Concerning land resources, it is important to understand how this change happens. Thus, this chapter aims to review how this change has occurred throughout the history of Sri Lanka. A piecemeal approach in the unsustainable manner of land resource utilization towards severe land changes illustrates and compares the land use and land cover changes in significant phases in the history of Sri Lanka. This was further revitalized as well as influenced by the land-use policies introduced throughout history. The absence of a clearly defined land-use policy in the country after independence is problematic when addressing land-related issues. Consequently, chronological changes in land use and land cover existed within the country has now doubled and more intensified than ever.


2017 ◽  
Author(s):  
Vanessa Haverd ◽  
Benjamin Smith ◽  
Lars Nieradzik ◽  
Peter R. Briggs ◽  
William Woodgate ◽  
...  

Abstract. The Community Atmosphere-Biosphere Land Exchange model (CABLE) is a land surface model (LSM) that can be applied stand-alone, as well as providing for land surface-atmosphere exchange within the Australian Community Climate and Earth System Simulator (ACCESS). We describe critical new developments that extend the applicability of CABLE for regional and global carbon-climate simulations, accounting for vegetation response to biophysical and anthropogenic forcings. A land-use and land-cover change module, driven by gross land-use transitions and wood harvest area was implemented, tailored to the needs of the Coupled Model Intercomparison Project-6 (CMIP6). Novel aspects include the treatment of secondary woody vegetation, which benefits from a tight coupling between the land-use module and the Population Orders Physiology (POP) module for woody demography and disturbance-mediated landscape heterogeneity. Land-use transitions and harvest associated with secondary forest tiles modify the annually-resolved patch age distribution within secondary-vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. Additionally, we implemented a novel approach to constrain modelled GPP consistent with the Co-ordination Hypothesis, predicted by evolutionary theory, which suggests that electron transport and Rubisco-limited rates adjust seasonally and across biomes to be co-limiting. We show that the default prior assumption – common to CABLE and other LSMs – of a fixed ratio of electron transport to carboxylation capacity at standard temperature (Jmax,0/Vcmax,0) is at odds with this hypothesis, and implement an alternative algorithm for dynamic optimisation of this ratio, such that co-ordination is achieved as an outcome of fitness maximisation. Results have significant implications the magnitude of the simulated CO2 fertilisation effect on photosynthesis in comparison to alternative estimates and observational proxies. These new developments convert CABLE to a state-of-the-art terrestrial biosphere model for use within an Earth System Model, and in stand-alone applications to attribute trends and variability in the terrestrial carbon cycle to regions, processes and drivers. Model evaluation shows that the new model version satisfies several key observational constraints, including (i) trend and interannual variations in the global land carbon sink, including sensitivities of interannual variations to global precipitation and temperature anomalies; (ii) centennial trends in global GPP; (iii) co-ordination of Rubisco-limited and electron transport-limited photosynthesis; (iv) spatial distributions of global ET, GPP, biomass and soil carbon; and (v) age-dependent rates of biomass accumulation in boreal, temperate and tropical secondary forests. CABLE simulations agree with recent independent assessments of the global land-atmosphere flux partition that use a combination of atmospheric inversions and bottom-up constraints. In particular there is agreement that the strong CO2-driven sink in the tropics is largely cancelled by net deforestation and forest degradation emissions, leaving the Northern Hemisphere (NH) extra-tropics as the dominant contributor to the net land sink.


2020 ◽  
Author(s):  
Karina Winkler ◽  
Richard Fuchs ◽  
Martin Herold ◽  
Mark Rounsevell

<p>People have increasingly been shaping the surface of our planet. Land use/cover change – the most visible human footprint on Earth – is one of the main contributors to greenhouse gas emissions and biodiversity loss and, hence, is a key topic for current sustainability debates and climate change mitigation. To understand these land surface dynamics and its impacts, accurate reconstructions of global land use/cover change are necessary. Although more and more observational data sets are publicly available (e.g. from remote sensing), current land change assessments are still incomplete and either lack temporal consistency, spatial explicitness or thematic detail. Here, we show a consistent reconstruction of global land use/cover change from 1960-2015, using an open data-driven approach that combines national land use statistics with earth observation data of multiple sources and scales. Our land change reconstruction model HILDA+ (Historic Land Dynamics Assessment) accounts for data-derived gross changes within six main land use/cover classes at 1 km spatial resolution: Urban areas, cropland, pastures and rangeland, forest, (semi-)natural grass- or shrubland, other land. As a result, we present yearly land use/cover maps at 1 km spatial resolution, magnitudes and hot spot areas of change. Globally, around 20 % of the land surface – almost three times the size of Brazil - has undergone change within the last 55 years. Further, gross change is about seven times as high as yearly net change extent for forest, cropland and pasture dynamics. We prove that land change studies accounting for net change only can lead to severe underestimations of change extent and frequency. With this purely data-driven approach, we address current research needs of the earth system modelling community by providing new layers of land use/cover change with unprecedented level of detail. Learning from the recent past, understanding how management and land cover dynamics interactively affect the climate is essential for implementing measures of mitigation and sustainable land use policies. In this context, a solid information base can support informed decision-making.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yongwei Yuan ◽  
Tao Zhao ◽  
Weimin Wang ◽  
Shaohui Chen ◽  
Feng Wu

Land use/cover change (LUCC) is an important part of the global environmental change. This study predicted the future structure of land use/cover on the basis of the Global Change Assessment Model (GCAM) and an econometric model with the socioeconomic factors as the driving forces. The future spatial pattern of land use/cover in China was simulated with the Dynamics of Land System (DLS) under the Business as Usual scenario, Rapid Economic Growth scenario and Cooperate Environmental Sustainability scenario. The simulation results showed that the land use/land cover in China will change continually due to the human activities and climate change, and the spatial pattern of land use/cover will also change as time goes by. Besides, the spatial pattern of land cover in China under the three scenarios is consistent on the whole, but with some regional differences. Built-up area will increase rapidly under the three scenarios, while most land cover types will show a decreasing trend to different degrees under different scenarios. The simulation results can provide an underlying land surface data and reference to the methodology research on the prediction of LUCC.


Sign in / Sign up

Export Citation Format

Share Document