scholarly journals Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China

2021 ◽  
Vol 13 (16) ◽  
pp. 9285
Author(s):  
Yueyue Rong ◽  
Junsong Jia ◽  
Min Ju ◽  
Chundi Chen ◽  
Yangming Zhou ◽  
...  

Currently, household carbon dioxide (CO2) emissions (HCEs) as one of the leading sources of greenhouse gas (GHG) have drawn notable scholarly concern. Thus, here, taking six provinces in the period of 2000–2017 of Central China as a case, we analyzed the characteristics and the driving factors of HCEs from direct energy consumption and three perspectives: Central China as a whole, urban-rural differences, and inter-provincial comparison. The drivers of direct HCEs were analyzed by the Logarithmic Mean Divisia Index (LMDI). The σ convergence was adopted for analyzing the trend of inter-provincial differences on the HCEs. The key findings are as follows. First, all the direct HCEs from three perspectives had an obvious growth trend. The total direct HCEs grew from 9596.20 × 104 tonnes in 2000 to 30,318.35 × 104 tonnes in 2017, with an increase of 2.16 times. Electricity and coal use were the primary sources. The urban and rural increases of direct HCEs were up 2.57 times and 1.77 times, respectively. The urban-rural gap of direct HCEs narrowed first and then widened. The direct HCEs in the six provinces varied significantly, but the gap was narrowing. Second, as a whole the per capita consumption expenditure and energy demand were the main drivers to the increment of HCEs, with cumulative contribution rates of 118.19% and 59.90%. The energy price effect was mainly responsible for the mitigation of HCEs. Third, the similar drivers’ trend can also be seen from the perspective of inter-provincial comparison. However, from the perspective of urban and rural difference, the population urban-rural structure effect played a reverse influence on both urban and rural areas. Thus, raising the energy prices appropriately, upgrading the residents’ consumption to a sustainable pattern, controlling the growth of population size reasonably, and optimizing the household energy structure might effectively mitigate the growth of HCEs in Central China.

2014 ◽  
Vol 665 ◽  
pp. 517-520
Author(s):  
Qiang Zhao ◽  
Xiu Mei Li ◽  
Xiang Yu Cui

The research estimates the carbon dioxide emissions of energy consumption from 2003 to 2011 using the method in IPCC national greenhouse gases listing guidance, by adopting the method of Kaya identities and Laspeyres index decomposition technique to analyze the influencing factors and the influencing degree. The result shows that the main factors influencing carbon dioxide emissions are energy structure and per capita GDP, and to develop clean energy, to improve energy structure are important choice to reduce the carbon dioxide emissions of energy consumption, realize low carbon in the future. This research provides an important reference to protect the environment and to promote the sustainable development of economy.


2012 ◽  
Vol 433-440 ◽  
pp. 1442-1446 ◽  
Author(s):  
Zhi Hua Zhou ◽  
Zi Chao Tan ◽  
Guo Qiang Yang ◽  
She Ming Qiu

Climate change is becoming a highlight of the world. As the world's second largest CO2 emission country, China faces increasing pressure. Energy consumption and utilizing is the major source of CO2 emissions. Optimization of the regional energy configuration can not only reduce energy consumption, but also reduce carbon dioxide emissions. Thus, it will achieve energy conservation and sustainable development. Based on the Eco-city constructed by China and Sino-Singapore, this paper calculates the regional energy-saving under the requirement of existing Energy Conservation Code, plans its energy saving quantity by taking some measurements and then predicts the carbon dioxide emission reductions. The result shows that using effective measures to save energy can reduce 227772t carbon dioxide emissions. Using renewable energy and energy saving measures will reduce 371414t CO2, which has a striking effect. So changing energy structure and using renew energy are main measures to reduce CO2 emission.


2012 ◽  
Vol 616-618 ◽  
pp. 1484-1489 ◽  
Author(s):  
Xu Shan ◽  
Hua Wang Shao

The coordination development of economy-energy-environment was discussed with traditional environmental loads model, combined with "decoupling" theory. Considering the possibilities of social and economic development, this paper set out three scenarios, and analyzed quantitatively the indexes, which affected carbon dioxide emissions, including population, per capita GDP, industrial structure and energy structure. Based on this, it forecasted carbon dioxide emissions in China in future. By comparing the prediction results, it held that policy scenario was the more realistic scenario, what’s more it can achieve emission reduction targets with the premise of meeting the social and economic development goals. At last, it put forward suggestions to implement successfully policy scenario, from energy structure, industrial structure, low-carbon technology and so on.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Stuti Haldar ◽  
Gautam Sharma

Purpose The purpose of this study is to investigate the impacts of urbanization on per capita energy consumption and emissions in India. Design/methodology/approach The present study analyses the effects of urbanization on energy consumption patterns by using the Stochastic Impacts by Regression on Population, Affluence and Technology in India. Time series data from the period of 1960 to 2015 has been considered for the analysis. Variables including Population, GDP per capita, Energy intensity, share of industry in GDP, share of Services in GDP, total energy use and urbanization from World Bank data sources have been used for investigating the relationship between urbanization, affluence and energy use. Findings Energy demand is positively related to affluence (economic growth). Further the results of the analysis also suggest that, as urbanization, GDP and population are bound to increase in the future, consequently resulting in increased carbon dioxide emissions caused by increased energy demand and consumption. Thus, reducing the energy intensity is key to energy security and lower carbon dioxide emissions for India. Research limitations/implications The study will have important policy implications for India’s energy sector transition toward non- conventional, clean energy sources in the wake of growing share of its population residing in urban spaces. Originality/value There are limited number of studies considering the impacts of population density on per capita energy use. So this study also contributes methodologically by establishing per capita energy use as a function of population density and technology (i.e. growth rates of industrial and service sector).


2019 ◽  
Vol 16 (1) ◽  
pp. 148-160
Author(s):  
Olga Piterina ◽  
Alexander Masharsky

Abstract Research purpose. The high-speed railway (HSR) construction project in the Baltic States is the largest joint infrastructure project since the restoration of independence of Latvia, Lithuania and Estonia. Rail Baltica (RB) is considered as the most energy-efficient project having the lowest environmental impact. However, the issue of energy consumption of the project was not sufficiently addressed either in the investment justification of the RB construction or in the relevant research works regarding the project. The aim of the current research is to determine the indicators of energy consumption and carbon dioxide (CO2) emissions intensity of the Latvian section of RB, since they are the key factors of the quantitative assessment of sustainability. Design/Methodology/Approach. Critical analysis of the academic research works and reports of the official international organizations dedicated to the topic of energy consumption and CO2 emissions of HSR was conducted prior to the calculation of the above-mentioned indicators. The method of calculation based on International Union of Railways (UIC) was used in order to conduct the cluster analysis within the framework of current work. The main points considered are electricity consumption, carbon dioxide emissions, and level of passenger and freight demand. Statistical databases of UIC and International Energy Agency were used. Findings. The calculations carried out by the authors of the given article demonstrate substantial figures of CO2 emissions intensity for Latvian section of the project related to the train load rate and traffic intensity which is evened out only by the CO2 emissions factor in Latvia. Originality/Value/Practical implications. On this basis the authors present the directions for future research required for the development of the effective strategy for the Latvian Republic with the aim of achieving the increase in the RB project’s ecological efficiency.


Sign in / Sign up

Export Citation Format

Share Document