scholarly journals The Effects of Rock Index Tests on Prediction of Tensile Strength of Granitic Samples: A Neuro-Fuzzy Intelligent System

2021 ◽  
Vol 13 (19) ◽  
pp. 10541
Author(s):  
Yan Li ◽  
Fathin Nur Syakirah Hishamuddin ◽  
Ahmed Salih Mohammed ◽  
Danial Jahed Armaghani ◽  
Dmitrii Vladimirovich Ulrikh ◽  
...  

Rock tensile strength (TS) is an essential parameter for designing structures in rock-based projects such as tunnels, dams, and foundations. During the preliminary phase of geotechnical projects, rock TS can be determined through laboratory works, i.e., Brazilian tensile strength (BTS) test. However, this approach is often restricted by laborious and costly procedures. Hence, this study attempts to estimate the BTS values of rock by employing three non-destructive rock index tests. BTS predictive models were developed using 127 granitic rock samples. Since the simple regression analysis did not yield a meaningful result, the development of models that integrate multiple input parameters were considered to improve the prediction accuracy. The effects of non-destructive rock index tests were examined through the use of multiple linear regression (MLR) and adaptive neuro-fuzzy inference system (ANFIS) approaches. Different strategies and scenarios were implemented during modelling of MLR and ANFIS approaches, where the focus was to consider the most important parameters of these techniques. As a result, and according to background and behaviour of the ANFIS (or neuro-fuzzy) model, the predicted values obtained by this intelligent methodology are closer to the actual BTS compared to MLR which works based on linear statistical rules. For instance, in terms of system error and a-20 index, values of (0.84 and 1.20) and (0.96 and 0.80) were obtained for evaluation parts of ANFIS and MLR techniques, which revealed that the ANFIS model outperforms the MLR in forecasting BTS values. In addition, the same results were obtained through ranking systems by the authors. The neuro-fuzzy developed in this study is a strong technique in terms of prediction capacity and it can be used in the other rock-based projects for solving relevant problems.

2021 ◽  
Author(s):  
Sonal Bindal

<p>In the recent years, prediction modelling techniques have been widely used for modelling groundwater arsenic contamination. Determining the accuracy, performance and suitability of these different algorithms such as univariate regression (UR), fuzzy model, adaptive fuzzy regression (AFR), logistic regression (LR), adaptive neuro-fuzzy inference system (ANFIS), and hybrid random forest (HRF) models still remains a challenging task. The spatial data which are available at different scales with different cell sizes. In the current study we have tried to optimize the spatial resolution for best performance of the model selecting the best spatial resolution by testing various predictive algorithms. The model’s performance was evaluated based of the values of determination coefficient (R<sup>2</sup>), mean absolute percentage error (MAPE) and root mean square error (RMSE). The outcomes of the study indicate that using 100m × 100m spatial resolution gives best performance in most of the models. The results also state HRF model performs the best than the commonly used ANFIS and LR models.</p>


2012 ◽  
Vol 229-231 ◽  
pp. 1449-1453 ◽  
Author(s):  
Yan Jun Li ◽  
Xiao Hui Peng ◽  
Yu Qiang Cheng ◽  
Jian Jun Wu

In this paper, the data of faulty sensors reconstruct algorithm of liquid-propellant rocket engine is developed based on adaptive neuro-fuzzy inference system. First, the input parameters selected for method is according to regularity criterion and the relationships between each parameter; second, adaptive neuro-fuzzy inference system is train by normal test, finally, the fuzzy mode is validated by normal data and the data of faulty sensor is reconstructed. The results indicate that this algorithm can reconstruct the data of faulty sensors accurately and show that the fuzzy model approach has good performance in faulty sensors data reconstruct for LRE.


Author(s):  
Jonata Jefferson Andrade ◽  
Leonardo Goliatt Da Fonseca ◽  
Michèle Farage ◽  
Geraldo Luciano de Oliveira Marques

Accurately forecast performance and durability is a critical issue for improving the design of new and existing pavements. The poor pavement performance increases traffic congestion, compromises safety, and raises maintenance costs due to frequent repairs. The resilient modulus is one of the most critical unbound material property inputs in several current pavement design procedures. Recent studies have addressed the problem of resilient modulus prediction using different methods, including computational intelligence approaches. In this paper, a hybrid intelligent system called ANFIS (Adaptive Neuro-Fuzzy Inference System) is used for predicting the resilient modulus from an experimental database of 270 distinct compositions. ANFIS achieved superior performance when estimating the resilient modulus of bituminous mixes, which can potentially save laboratory resources.


Author(s):  
Ibrahim Goni ◽  
Christopher U. Ngene ◽  
Manga I. ◽  
Auwal Nata’ala ◽  
Sunday J. Calvin

Tuberculosis is a contiguous disease that is causing death both in developed and developing countries. The main aim of this research work was to a developed an intelligent system for diagnosing Tuberculosis using adaptive neuro-fuzzy methodology. Eleven symptoms of tuberculosis which are persistent cough for more than two weeks, cough with blood, weight loss, tiredness, chest pain, fever, difficulty in breathing, loss of appetite, lymph node enlargement, history of TB contact and night Sweat are assigned with weights which are categorize best on severity level as mild, moderate, severe and very severe, yes and no which serve as inputs to the adaptive neuro-fuzzy inference system (ANFIS). MATLAB 7.0 is used to implement this experiment, Trapezoidal Membership function was used, back propagation algorithm was used for training and testing, the error obtain is 0.41777 at epoch 2 which shows that the training performance is exactly 99.58223 and testing performance of the system are 99.58197 at epoch 2.   


Author(s):  
Reza Pourbabaki ◽  
Zahra Beigzadeh ◽  
Behnam Haghshenas ◽  
Ali Karimi ◽  
Zahra Alaei ◽  
...  

Background: Unsafe behavior in industries can be due to different factors. The aim of this study was to predict and model unsafe behavior using a safety atmosphere and cultural attitudes questionnaires. Methods: This study was a descriptive-analytic and cross-sectional examination that analyzed the data and predicted the unsafe behaviors of 90 construction workers using Neuro-Fuzzy Inference System (ANFIS) in MATLAB R2016a software. Results: In this study, the model of the safety atmosphere - unsafe behavior and the model of the cultural attitudes - unsafe behavior had the regression coefficients of 0.93373 and 0.9234, respectively. It showed that each of the parameters has a close relationship to the rate of the unsafe behavior. In this regard, a combination of the safety atmosphere and safety attitude parameters for the estimation of the unsafe behaviors achieved the better results with a regression coefficient of 0.9453 which indicates the direct effect of both parameters simultaneously on unsafe behavior. Conclusion: Based on the findings, it can be concluded that the neuro-fuzzy model can be used as an appropriate tool for predicting unsafe behavior in the industries.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Theddeus T Akano ◽  
Olumuyiwa S Asaolu

This paper employs artificial intelligence in predicting the stability of pipes conveying fluid. Field data was collected for different pipe structures and usage. Adaptive Neuro-Fuzzy Inference System (ANFIS) model is implemented to predict the stability of the pipe using the fundamental natural frequency at different flow velocities as the index of stability. Results reveal that the neuro-fuzzy model compares relatively well with the conventional finite element method. It was also established that a pipe conveying fluid is most stable when the pipe is clamped at both ends but least stable when it is a cantilever.


2016 ◽  
Vol 12 (3) ◽  
pp. 78-93 ◽  
Author(s):  
Rawan Ghnemat ◽  
Adnan Shaout

Search engines are crucial for information gathering systems (IGS). New challenges face search engines concerning automatic learning from user requests. In this paper, a new hybrid intelligent system is proposed to enhance the search process. Based on a Multilayer Fuzzy Inference System (MFIS), the first step is to implement a scalable system to relay logical rules in order to produce three classifications for search behavior, user profiles, and query characteristics from analysis of navigation log files. These three outputs from the MFIS are used as inputs for the second step, an Adaptive Neuro-Fuzzy Inference System (ANFIS). The training process of the ANFIS replaced the rules by adjusting the weights in order to find the most relevant result for the search query. This proposed system, called MFIS-ANFIS, is implemented as an experimental system. The system performance is evaluated using quantitative and comparative analysis. MFIS-ANFIS aimed to be the core of intelligent and reliable search process.


2014 ◽  
Vol 1 (1) ◽  
pp. 60-69 ◽  
Author(s):  
George Atsalakis ◽  
Eleni Chnarogiannaki ◽  
Consantinos Zopounidis

Tourism in Greece plays a major role in the country's economy and an accurate forecasting model for tourism demand is a useful tool, which could affect decision making and planning for the future. This paper answers some questions such as: how did the forecasting techniques evolve over the years, how precise can they be, and in what way can they be used in assessing the demand for tourism? An Adaptive Neuro-Fuzzy Inference System (ANFIS) has been used in making the forecasts. The data used as input for the forecasting models relates to monthly time-series tourist arrivals by air, train, sea and road into Greece from January 1996 until September 2011. 80% of the data has been used to train the forecasting models and the rest to evaluate the models. The performance of the model is achieved by the calculation of some well known statistical errors. The accuracy of the ANFIS model is further compared with two conventional forecasting models: the autoregressive (AR) and autoregressive moving average (ARMA) time-series models. The results were satisfactory even if the collected data were not pleasing enough. The ANFIS performed further compared to the other time-series models. In conclusion, the accuracy of the ANFIS model forecast proved its great importance in tourism demand forecasting.


2017 ◽  
Vol 6 (2) ◽  
pp. 45 ◽  
Author(s):  
Ravi Kumar Sharma ◽  
Dr. Parul Gandhi

There are many algorithms and techniques for estimating the reliability of Component Based Software Systems (CBSSs). Accurate esti-mation depends on two factors: component reliability and glue code reliability. Still much more research is expected to estimate reliability in a better way. A number of soft computing approaches for estimating CBSS reliability has been proposed. These techniques learnt from the past and capture existing patterns in data. In this paper, we proposed new model for estimating CBSS reliability known as Modified Neuro Fuzzy Inference System (MNFIS). This model is based on four factors Reusability, Operational, Component dependency, Fault Density. We analyze the proposed model for diffent data sets and also compare its performance with that of plain Fuzzy Inference System. Our experimental results show that, the proposed model gives better reliability as compare to FIS.


2017 ◽  
Author(s):  
Mahdi Zarei

AbstractThis paper presents the development and evaluation of different versions of Neuro-Fuzzy model for prediction of spike discharge patterns. We aim to predict the spike discharge variation using first spike latency and frequency-following interval. In order to study the spike discharge dynamics, we analyzed the Cerebral Cortex data of the cat from [29]. Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Wang and Mendel (WM), Dynamic evolving neural-fuzzy inference system (DENFIS), Hybrid neural Fuzzy Inference System (HyFIS), genetic for lateral tuning and rule selection of linguistic fuzzy system (GFS.LT.RS) and subtractive clustering and fuzzy c-means (SBC) algorithms are applied for data. Among these algorithms, ANFIS and GFS.LT.RS models have better performance. On the other hand, ANFIS and GFS.LT.RS algorithms can be used to predict the spike discharge dynamics as a function of first spike latency and frequency with a higher accuracy compared to other algorithms.


Sign in / Sign up

Export Citation Format

Share Document