scholarly journals An Optimization Model for Water Management under the Dual Constraints of Water Pollution and Water Scarcity in the Fenhe River Basin, North China

2021 ◽  
Vol 13 (19) ◽  
pp. 10835
Author(s):  
Chong Meng ◽  
Siyang Zhou ◽  
Wei Li

Sustainable watershed development suffers from severe challenges, such as water pollution and water scarcity. Based on an analysis of water quality and water utilization in the Fenhe River Basin, an inexact two-stage stochastic programming model with downside-risk aversion was built for optimal water resource allocations for the four primary water use sectors (industry, domestic use, agriculture, and the environment) in the Fenhe River Basin. The model aims to maximize the comprehensive watershed benefits, including water benefits, water costs, water treatment costs, and downside risks. The constraints are water quality, available water resources, and sectoral demands in different hydrological scenarios. The results show that pollutant emissions decrease as risk-aversion levels increase and show the opposite trend in the midstream and downstream areas. The increase in water resource allocation for agriculture and reduction in ecological water indicate that agriculture suffered the greatest water shortage and risk. Improving water recycling and coordinating the transferred water resources increases the comprehensive benefits and reduces sectoral risks. The model effectively manages rational water allocations under dual constraints and provides support for coordinating socio-economic development and environmental protection in the river basin.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1318
Author(s):  
Chong Meng ◽  
Wei Li ◽  
Runhe Cheng ◽  
Siyang Zhou

Water resource allocation aimed at sustainable watershed development suffers from prominent challenges such as water pollution and scarcity, especially in water-deprived regions. Based on analysis of water quality, use, and sectoral demands during the planning period in the Fenhe River Basin, an improved inexact two-stage stochastic programming model with downside risk control was built for optimal resource allocations for the four primary sectors (industry, domestic use, agriculture, and the environment) in the basin. The principal constraints are river water quality and available water resources under the three hydrological scenarios (low, medium, and high). The results show that industrial, domestic, and agricultural water use in the middle and lower reaches were significantly reduced by requiring improved water quality; agriculture suffered the greatest water shortage and risk. As the level of risk control improved, the comprehensive watershed benefits and agricultural risks were gradually reduced. Improving water reuse significantly reduces the risk and increases the benefits. The model can effectively manage rational water allocations under the dual constraints of water quality and quantity, meanwhile alleviating water competition caused by different water benefits to provide support for coordinating the improvement of water quality and socio-economic development in the basin.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 579 ◽  
Author(s):  
Lei Jin ◽  
Haiyan Fu ◽  
Younggy Kim ◽  
Li Wang ◽  
Huiyan Cheng ◽  
...  

In this study, a new α-representation of the inexact T2 fuzzy sets programming model (α-RITF2SP) is proposed for water resources planning under uncertainties. The developed model is a hybrid of inexact type-2 (T2) fuzzy sets (FSs) optimal programming based on α-cuts and α-planes (z-slices) algorithms, and both can be used in problems of water resource management without a loss of generality. Therefore, this novel method represents a complementary method to combine both of these algorithms to make inexact T2FSs methods easier and faster for users under uncertainties. This method provides not only a reduction in computations when computing fuzzy functions, but also a map of the primary variable of T2FSs in the secondary membership function. The α-RITF2SP is applied to a real case study of the operation of water resource systems in the southern Min River basin that involves three cities: Xiamen, Zhangzhou, and Quanzhou. The results of the water allocations and benefits have been analyzed. The symptoms of results indicate the higher profit with a higher wastewater treatment rate. It also represents that this model has enhanced abilities and it is relevant and practical as well as can serve as a guide for the development of this regional economy.


2020 ◽  
Vol 101-102 (3-4) ◽  
pp. 41-51
Author(s):  
Maryna Shuliakova ◽  
Valeriy Mykhaylenko

The study depicts an anthropogenic impact on water quality in the Southern Bug river basin that provides water to about 8% of the population of Ukraine. The potential ecologically dangerous water bodies were identified for Khmelnytsky, Vinnytsia, Mykolayiv and Kirovograd regions. The cartographic data indicated water quality within the selected basin segments is presented. The quality of surface waters was assessed based on the water pollution index (IP). The multiplicity of Maximum Permissible Levels (MPL) for ammonium, sulphate and chloride ions together with the Biochemical Oxygen Demand (BOD5) were determined in water samples has been taken in observation points. The preconditions of the pollution problems and their scales were indicated. The list of enterprises whose activities have the greatest impact on the deterioration of water quality, the type of industries and the main water pollution sources are also highlighted. The economic mastering of the river basin is investigated. The basin has been inclined by anthropogenic impact within the last decades, leading to continuous water resource degradation. The holistic Driver-Pressure-State-Impact-Response (DPSIR) approach was applied to investigate the main causes and origins of anthropogenic pressures aiming at optimizing the measures of sustainable water resources management. The major driving forces that affect the Southern Bug river basin are non-safety industrial enterprises, intensive agriculture, and insufficient water resources management. The main pressures on water resources provided the unclean agricultural drains driving to water quality degradation. The recommended responses are based on the Water Framework Directive (WFD) 2000/60/EC and sum up to rationalization of water resources, an appropriate land use, municipal waste management and especially agriculture effluents. The proposed measures to optimize the water resources management in the Southern Bug River Basin will contribute to achievement of the objectives set by Goal 6 of the National Strategy for Sustainable Development SDG-2030.


Water Policy ◽  
2021 ◽  
Author(s):  
Huiliang Wang ◽  
Shuoqiao Huang ◽  
Danyang Di ◽  
Yu Wang ◽  
Fengyi Zhang

Abstract To analyze the spatial distribution characteristics of water resource value in the agricultural system of the Yellow River Basin, this paper takes the Yellow River Basin as its research object and studies the spatial distribution characteristics and influencing factors of water resource value in the agricultural system using the emergy theory and method, the spatial autocorrelation analysis method, and the spatial regression model. The results show that (1) the value of water resources in the agricultural system ranges from 0.64 to 0.98$/m3, and the value in the middle and lower reaches of the basin is relatively high; (2) the Moran index of the water resource value in the agricultural system is 0.2772, showing a positive spatial autocorrelation feature. Here, ‘high-high (high value city gathering)’ is the main aggregation mode, which is mainly concentrated in the middle and lower reaches of the basin. (3) The spatial error model, moreover, has the best simulation effect. The cultivated land area, total agricultural output value, agricultural labor force, and total mechanical power have a significant positive impact on the agricultural production value of water resources in the Yellow River Basin; the altitude, annual average temperature, and agricultural water consumption have a negative impact. Overall, this study shows that guiding the distribution of water resources according to their value and increasing agricultural water use in the middle and lower reaches of the basin will help improve the overall agricultural production efficiency of water resources in the basin.


Author(s):  
Haixia Zheng ◽  
Stale Navrud ◽  
Shiran Shen

Payment for Environmental Services (PES) in the watershed has been widely adopted as an important policy instrument to compensate upstream water users for providing water quality improvement for the whole river basin. In this paper, we use three independent valuation methods to determine the price of ecosystem service (ES), particularly water quality, in Miyun Reservoir, the main surface water source for Beijing. We find that the value of water quality is lowest using opportunity cost of limitation of development rights (OCLDR), highest with contingent valuation method (CVM), and water resources benefits assessment (WRBA) gives an in-between value. OCLDR determines the size of subsidies from those that benefit from water quality improvement from upstream. WRBA is a reference for compensation criteria to the upstream government and farmers when water resources are transferred across jurisdictional boundaries. CVM not only captures the direct value of water quality improvement, but also the indirect value of improvement in other ecosystem services as a result of improvement in water quality. Based on the results, we propose a multi-level ecological compensation system for the Miyun Reservoir river basin. We use OCLDR to determine subsides/ compensation to upstream farmers and other suppliers of the ES; WRBA set the price of water transfer; and CVM to figure out the size of payments for integrated water quality improvement.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2661
Author(s):  
Yongfen Zhang ◽  
Chongjun Tang ◽  
Aizhong Ye ◽  
Taihui Zheng ◽  
Xiaofei Nie ◽  
...  

Quantitatively figuring out the effects of climate and land-use change on water resources and their components is essential for water resource management. This study investigates the effects of climate and land-use change on blue and green water and their components in the upper Ganjiang River basin from the 1980s to the 2010s by comparing the simulated changes in blue and green water resources by using a Soil and Water Assessment Tool (SWAT) model forced by five climate and land-use scenarios. The results suggest that the blue water flow (BWF) decreased by 86.03 mm year−1, while green water flow (GWF) and green water storage (GWS) increased by 8.61 mm year−1 and 12.51 mm year−1, respectively. The spatial distribution of blue and green water was impacted by climate, wind direction, topography, and elevation. Climate change was the main factor affecting blue and green water resources in the basin; land-use change had strong effects only locally. Precipitation changes significantly amplified the BWF changes. The proportion of surface runoff in BWF was positively correlated with precipitation changes; lateral flow showed the opposite tendency. Higher temperatures resulted in increased GWF and decreased BWF, both of which were most sensitive to temperature increases up to 1 °C. All agricultural land and forestland conversion scenarios resulted in decreased BWF and increased GWF in the watershed. GWS was less affected by climate and land-use change than GWF and BWF, and the trends in GWS were not significant. The study provides a reference for blue and green water resource management in humid areas.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6268
Author(s):  
Aditya Dinesh Gupta ◽  
Prerna Pandey ◽  
Andrés Feijóo ◽  
Zaher Mundher Yaseen ◽  
Neeraj Dhanraj Bokde

According to the United Nation’s World Water Development Report, by 2050 more than 50% of the world’s population will be under high water scarcity. To avoid water stress, water resources are needed to be managed more securely. Smart water technology (SWT) has evolved for proper management and saving of water resources. Smart water system (SWS) uses sensor, information, and communication technology (ICT) to provide real-time monitoring of data such as pressure, water ow, water quality, moisture, etc. with the capability to detect any abnormalities such as non-revenue water (NRW) losses, water contamination in the water distribution system (WDS). It makes water and energy utilization more efficient in the water treatment plant and agriculture. In addition, the standardization of data format i.e., use of Water Mark UP language 2.0 has made data exchange easier for between different water authorities. This review research exhibits the current state-of-the-art of the on-going SWT along with present challenges and future scope on the mentioned technologies. A conclusion is drawn that smart technologies can lead to better water resource management, which can lead to the reduction of water scarcity worldwide. High implementation cost may act as a barrier to the implementation of SWT in developing countries, whereas data security and its reliability along with system ability to give accurate results are some of the key challenges in its field implementation.


2018 ◽  
Vol 246 ◽  
pp. 02030
Author(s):  
Xingyi Xu ◽  
Chuqiu Xiao ◽  
Chunyan Hu ◽  
Guiyuan Li ◽  
Xiang Gao ◽  
...  

According to the daily flow data collected by three representative hydrological stations in the Xiangjiang River basin which are the Guiyang station in the upstream section, the Hengshan station in the midstream section, and the Xiangtan station in the downstream section, and the water environment data collected from the Hunan Water Resources Bulletin, Mann-Kendal method was used to analyze the changes of the annual average flow of the Xiangjiang River basin in the past 20 years as well as the variation of water environment quality in the whole year, flood season and non-flood season. Based on these analysis, the evolution trend of water resources and water environment in the Xiangjiang River basin is further forecasted. The results show that the annual runoff of the upper reaches of the Xiangjiang River basin tends to be stable, and the runoff of the middle and lower reaches is decreasing. The water quality of the Xiangjiang River basin got deteriorated from 1996 to 2010. A sudden change occurred around 2012, and the water quality of the basin gradually improved.


2020 ◽  
Author(s):  
Iolanda Borzì ◽  
Murugesu Sivapalan ◽  
Brunella Bonaccorso ◽  
Alberto Viglione

<p>In many regions of the world, water supply is threatened by natural hazards such as floods and droughts, as well as by shocks induced by anthropogenic changes to water use. Lack of anticipation and/or preparation for these events can lead to delayed or insufficient responses to sudden or developing water crises, that sometimes can produce irrecoverable damage to the environment. In this work, a socio-hydrological approach to sustainable water resources management of the Alcantara River Basin in Sicily (Italy) is adopted that explicitly takes into account feedbacks between the natural and the human components that might arise from shocks to the water management system, including possible evolution of policy responses. The Alcantara River Basin is a groundwater-fed catchment which supplies many villages on the Ionian coast up to Messina city, mainly through the Alcantara aqueduct, but also agricultural areas and industries, including hydropower plants. It also hosts the Alcantara Fluvial Park, an important natural reserve. The Alcantara aqueduct also supplied the city of Messina during a temporary failure of its main aqueduct caused by a landslide in October 2015. The main purpose of the work is to use the socio-hydrological model as a “screening tool” to frame water resource management issues in a broad way and provide guidance to the community to identify aspects of societal behavior that need to evolve towards sustainable water resource management in order to withstand future shocks. This has been done by scenario simulations in conditions of a natural shock affecting the system (i.e. drought) and of a human-induced one (i.e. increase in groundwater extraction). Sensitivity analysis of the model social parameters revealed how the value attributed by the society to the environment and water resources use, its capacity to remember previous water crises and, in particular, its previous responses to shocks, can affect the system in a way that can produce paradoxical effects. Results show how a rapid decision-making strategy that may work in the short term, can be counter-productive when viewed over the long term and how a do-nothing decision during a water crisis could be highly damaging to the environment. For the above-mentioned reasons, this socio-hydrological approach can be considered as a useful tool to understand human-water dynamics and to support decision-makers in water resource management policies with a broad and long-term perspective.</p>


Sign in / Sign up

Export Citation Format

Share Document